Role of fractal features in the structure-property relationships of carbon black filled polymers

Abstract

Carbon black is widely used as a filler in order to modify the mechanical or the electrical properties of polymers. Such composites display significant non-linear effects. Moreover, examination of the large number of papers devoted to the physical properties of carbon black filled polymers indicates that each composite, even composites apparently consisting of similar matrixes and similar carbon blacks, may behave differently when prepared by different mixing methods. The present work aims to show that these particular behaviors can be related to the fact that carbon blacks used for composites are mass fractals of low dimensionality (Df <2) that are able to interpenetrate each other to an extent that depends on the filler-matrix surface interaction and on the volume fraction of filler.

Small-angle X-ray scattering (SAXS) is a convenient method for studying disordered systems at length scales ranging between a few tenths and a few hundred nm. SAXS is therefore particularly advantageous for exploring the morphology of carbon black aggregates and their degree of interpenetration when dispersed in a matrix. Furthermore, the use of an area detector yields two-dimensional images and hence information about anisotropy of the arrangement of scatterers. It is shown that this arrangement profoundly influences the physical properties of the composites.

Analysis of SAXS curves obtained for a rubber grade carbon black (N330) and for composites prepared by dispersing it into polyethylene or EPR will be presented. As an example, the temperature and frequency dependence of the electrical conductivity will be discussed and compared to theoretical models. Finally, the mutual consistency of the electrical and mechanical behavior, theoretical models and information deduced from the scattering curves will be shown.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. Probst, Carbon Black, ed. Donnet J.B.; Bansal R.C.; Wang M.-J., (Marcel Dekker, 1993) pp. 271-288.

  2. 2.

    S. Wolff and M.-J. Wang, Carbon Black, ed. Donnet J.B.; Bansal R.C.; Wang M.-J., (Marcel Dekker, 1993) pp. 289-355.

  3. 3.

    A.I. Medalia, Rubber Chem. Technol., 47, 411 (1974).

    Article  CAS  Google Scholar 

  4. 4.

    A.I. Medalia, J. Colloid Interface Sci., 32, 115 (1970).

    Article  CAS  Google Scholar 

  5. 5.

    R. Thouy and R. Jullien, J. Phys. A: Math. Gen. 27, 2953 (1994).

    Article  Google Scholar 

  6. 6.

    C.R. Herd, G.C. McDonald and W.M. Hess, Rubber Chem. Technol., 65, 1 (1991).

    Google Scholar 

  7. 7.

    J.P. Simon, S. Arnaud, Bley F., J.F. Bérar, B. Caillot, V. Comparat, E. Geissler, A. de Geyer, P. Jeantey, F. Livet and H. Okuda, J. Appl. Cryst., 30, 900 (1997).

    Article  CAS  Google Scholar 

  8. 8.

    F. Livet, F. Bley, J. Mainville, R. Caudron, S.G.J. Mochrie, E. Geissler, G. Dolino, D. Abernathy, G. Grübel, and M. Sutton, Nucl. instrum. methods phys. res., Sect. A., 451, 596 (2000).

    Article  CAS  Google Scholar 

  9. 9.

    P. Schmidt, F. Ehrburger-Dolle, P. Pfeifer, T. Rieker, Y. Kapoor and D. Voss, Mater. Res. Symp. Proc., 407, 399 (1996).

    Article  CAS  Google Scholar 

  10. 10.

    T.P. Rieker, S. Misono and F. Ehrburger-Dolle, Langmuir, 15, 914 (1999).

    Article  CAS  Google Scholar 

  11. 11.

    T.P. Rieker, M. Hindermann-Bischoff and F. Ehrburger-Dolle, Langmuir, 16, 5588 (2000).

    Article  CAS  Google Scholar 

  12. 12.

    F. Ehrburger-Dolle, M. Hindermann-Bischoff, F. Livet, F. Bley, C. Rochas and E. Geissler, Langmuir, 17 (2001) in press.

  13. 13.

    J. Fournier, PhD Thesis, Université Claude Bernard Lyon I (1997).

  14. 14.

    H. Scher and R.J. Zallen, J. Chem. Phys., 53, 3759 (1970).

    Article  CAS  Google Scholar 

  15. 15.

    F. Ehrburger and J. Lahaye, J. Phys. France, 50, 1349 (1989).

    Article  CAS  Google Scholar 

  16. 16.

    F. Ehrburger-Dolle, J. Lahaye and S. Misono, Carbon, 32, 1363 (1994).

    Article  CAS  Google Scholar 

  17. 17.

    M. Hindermann-Bischoff, PhD Thesis, Université de Haute-Alsace, Mulhouse (1999).

  18. 18.

    D. Van Der Putten, J.T. Moonen, H.B. Brom, J.C.M. Brokken Zijp and M.A.J. Michels, Phys. Rev. Lett., 69, 494 (1992).

    Article  Google Scholar 

  19. 19.

    P. Mandal, A. Neumann, A.G.M. Jansen, P. Wyder and R. Deltour, Phys. Rev. B, 36, 452 (1997).

    Article  Google Scholar 

  20. 20.

    J. Planés, A. Wolter, Y. Cheguettine and A. Pron, J. Chim. Phys., 95, 1433 (1998).

    Article  Google Scholar 

  21. 21.

    Y. Cheguettine, J. Planés and E. Banka, J. Chim. Phys., 95, 1465 (1998).

    Article  CAS  Google Scholar 

  22. 22.

    Ping Sheng and J. Klafter, Phys. Rev. B, 27, 2583 (1983).

    Article  Google Scholar 

  23. 23.

    L.J. Andriaanse, J.A. Reedijk, P.A.A. Teunissen, H.B. Brom, M.A.J. Michels and J.C.M. Brokken-Zijp, Phys. Rev. Lett., 78, 1755 (1997).

    Article  Google Scholar 

  24. 24.

    M. Hindermann-Bischoff and F. Ehrburger-Dolle, Carbon (2001), in press.

    Google Scholar 

  25. 25.

    J.C. Dyre, J. Appl. Phys., 64, 2456 (1988).

    Article  Google Scholar 

  26. 26.

    G.J. Lee, K.D. Suh, S.S. Im, Polym. Eng. Sci., 38, 471 (1998).

    Article  CAS  Google Scholar 

  27. 27.

    M. Ben-Chorin, F. Möller, F. Koch, W. Schirmacher, M. Eberhard, Phys. Rev. B, 51, 2199 (1995).

    Article  CAS  Google Scholar 

  28. 28.

    R. Oeser, C. Picot and J. Herz, Polymer Motion in Dense Systems, ed. D. Richter and T. Springer, Springer Proceedings in Physics, 29, (Springer, 1987), p. 104.

    Article  Google Scholar 

  29. 29.

    T.A. Witten, M. Rubinstein and R.H. Colby, J. Phys. II France, 3, 367 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Françoise Ehrburger-Dolle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ehrburger-Dolle, F., Hindermann-Bischoff, M., Geissler, E. et al. Role of fractal features in the structure-property relationships of carbon black filled polymers. MRS Online Proceedings Library 661, KK7.4 (2000). https://doi.org/10.1557/PROC-661-KK7.4

Download citation