Microstructural analysis of the compatibility of solution deposited buffer layers with the TFA process for YBCO

Abstract

In this paper, the feasibility of applying solution deposition processes for the fabrication of coated conductors has been explored. The crystal and chemical compatibility of the buffer layers processed using metalorganic decomposition with the Y123 deposition using the trifluoroacetate process has been studied. Two buffer layer materials have been used, namely, barium zirconate and strontium titanate. The measured superconducting properties of these conductors were correlated with the microstructure observed on these samples using SEM and cross-sectional TEM. In case of barium zirconate buffer layers, though there exists a very good structural and chemical compatibility between the buffer layer and the Y123, the presence of surface defects in the buffer layer causes compositional heterogeneity and randomly oriented grains in the Y123 film. This leads to poor superconducting properties. In case of strontium titanate buffer layers, due to the excellent crystal and chemical compatibility, and the absence of surface defects, high critical current densities (of the order of 106A/cm2 at 77K and self field) were obtained. However, TEM cross section studies reveals the presence of a significant portions of a-oriented Y123 crystallites which could lead to lower critical current densities. Further studies of the TFA process is required to eliminate the occurrence of a-oriented Y123 in the microstructure. This could lead to further improvements in the properties.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Y. Iijima, N. Tanabe, O. Kohno, Y. Ikeno, Appl. Phys. Lett., v 61, p 2231 (1992).

    Article  Google Scholar 

  2. [2]

    D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, and F.A. List, Science, v 274, p 755 (1996).

    CAS  Article  Google Scholar 

  3. [3]

    R.W. Schwartz, J.A. Voigt, B.A. Tuttle, D.A. Payne, T.L. Reichert, and R.S. DeSalla, J. Mater. Res., v 12, p 444 (1997)

    CAS  Article  Google Scholar 

  4. [4]

    M. Paranthaman, S.S. Shoup, D.B. Beach, R.K. Williams, and E.D. Specht, Mater. Res. Bull., v 32, p 1697 (1997).

    CAS  Article  Google Scholar 

  5. [5]

    P.C. McIntyre and M.J. Cima, J. Mater. Res., v 9, p 2219 (1994).

    CAS  Article  Google Scholar 

  6. [6]

    S. Sathyamurthy and K. Salama, Physica C 341, p2479 (2000).

    Article  Google Scholar 

  7. [7]

    S. Sathyamurthy and K. Salama, Supercond. Sci. Tech., v 13, L1–L3 (2000).

    CAS  Article  Google Scholar 

  8. [8]

    S. Sathyamurthy and K. Salama, J. Supercond., v 11, p 545 (1998).

    CAS  Article  Google Scholar 

  9. [9]

    S. Sathyamurthy and K. Salama, Physica C 329, p58 (2000).

    Article  Google Scholar 

  10. [10]

    P.C. McIntyre, M.J. Cima, and A. Roshko, J. Appl. Phys., v 77, p 5263 (1995).

    CAS  Article  Google Scholar 

  11. [11]

    V.F. Solovyov, H.J. Weissman, L. Wu, M. Suenaga, and R. Feenstra, IEEE Trans. Appl. Supercond., v 9, p 1467 (1999).

    Article  Google Scholar 

  12. [12]

    J.A. Smith, M.J. Cima, and N. Sonnenberg, IEEE Trans. Appl. Supercond., v 9, p 1531 (1999).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Salama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salama, K., Sathyamurthy, S. & Mironova, M. Microstructural analysis of the compatibility of solution deposited buffer layers with the TFA process for YBCO. MRS Online Proceedings Library 659, 41 (2000). https://doi.org/10.1557/PROC-659-II4.1

Download citation