Hybrid Electronic-density-functional/molecular-dynamics Simulation on Parallel Computers: Oxidation of Si Surface


A hybrid quantum mechanical/molecular dynamics simulation scheme is developed by embedding a quantum mechanical system described by the real-space density-functional theory in a classical system of atoms interacting via an empirical interatomic potential. A novel scaled position method for handshake atoms coupling the quantum and the classical systems is introduced. Hybrid simulation run for oxidation of Si (100) surface is performed to demonstrate seamless coupling of the quantum and the classical systems.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976).

    CAS  Article  Google Scholar 

  2. 2.

    M. Svensson, S. Hymbel, R. D.F. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Comp. Chem. 100, 19357 (1996).

    CAS  Google Scholar 

  3. 3.

    U. Eichler, C. M. Kölmel, and J. Sauer, J. Comp. Chem. 18, 463 (1996).

    Article  Google Scholar 

  4. 4.

    S. Dapprich, I. Komäromi, K. S. Byun, K. Morokuma, and M.J. Frisch, J. Mol. Struc. (Theochem) 461-462, 1 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    J.Q. Broughton, F.F. Abraham, N. Bernstein, and E. Kaxiras, Phys. Rev. B 60, 2391 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    P. Hoenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  7. 7.

    See, e.g., M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    CAS  Article  Google Scholar 

  8. 8.

    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    J.R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).

    CAS  Article  Google Scholar 

  10. 10.

    E.L. Briggs, D.J. Sullivan, and J. Bernholc, Phys. Rev. B 54, 14362 (1996).

    CAS  Article  Google Scholar 

  11. 11.

    A. Brandt, Math. Comp. 31, 333 (1977).

    Article  Google Scholar 

  12. 12.

    S. Ogata, F. Shimojo, A. Nakano, P. Vashishta, and R.K. Kalia, Comp. Phys. Comm., in press

  13. 13.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    F. Shimojo, T.J. Campbell, R.K. Kalia, A. Nakano, S. Ogata, P. Vashishta, and K. Tsuruta, Future Generation Comp. Sys., accepted for publication.

  15. 15.

    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11168 (1996).

    Article  Google Scholar 

  16. 16.

    W. Gropp, E. Lusk, and A. Skjellum, Using MPI (MIT Press, Cambridge, 1994).

    Google Scholar 

  17. 17.

    A. Nakano, R. K. Kalia, and P. Vashishta, Comp. Phys. Comm. 83, 197 (1994; A. Nakano, Concurrency: Practice and Experience 11, 343 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    M.P. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  19. 19.

    F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985).

    CAS  Article  Google Scholar 

  20. 20.

    K.E. Khor and S. Das Sarma, Phys. Rev. B 36, 7733 (1987).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shuji Ogata.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ogata, S., Shimojo, F., Nakano, A. et al. Hybrid Electronic-density-functional/molecular-dynamics Simulation on Parallel Computers: Oxidation of Si Surface. MRS Online Proceedings Library 653, 651 (2000). https://doi.org/10.1557/PROC-653-Z6.5

Download citation