Forces between Dislocations due to Dislocation Core Fields

Abstract

Atomistic dislocation models were used to determine the properties of dislocation core fields in Al using an EAM potential. Equilibrium atom configurations were compared with initial configurations displaced according to the Volterra field to determine core displacement fields for edge, screw, and mixed (60° and 30°) geometries. The core field was approximated by a line force defect field lying parallel to the dislocation line direction. Best-fit parameters for the core fields were obtained in terms of the anisotropic elastic solution for a line force defect, from which the line force strengths and the origin of the line forces were determined. The line force stress fields were then used to compute the forces between dislocations for several dislocation configurations. The Volterra field dominates beyond 50b but core field forces modify the equilibrium angle of edge dislocation dipoles and determine the force between otherwise noninteracting edge and screw dislocations at distances out to 50b compared to the Volterra-only forces.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. C. Fivel and G. R. Canova, Modell. Simul. Mater. Sci. Eng., 1999, 7 753.

    CAS  Article  Google Scholar 

  2. 2.

    P. C. Gehlen, J. P. Hirth, R. G. Hoagland, and M. F. Kanninen, J. Appl. Phys., 1972, 43 3921.

    Article  Google Scholar 

  3. 3.

    C. Crussard and F. Aubertin, Rev. Met., 1949, 46 354.

    CAS  Article  Google Scholar 

  4. 4.

    R. G. Hoagland, J. P. Hirth, and P. C. Gehlen, Philos. Mag., 1976, 34 413.

    CAS  Article  Google Scholar 

  5. 5.

    B. L. Adams, J. P. Hirth, P. C. Gehlen, and R. G. Hoagland, J. Phys. F, 1977, 7 2021.

    CAS  Article  Google Scholar 

  6. 6.

    P. C. Gehlen, R. G. Hoagland, M. F. Kanninen, and J. P. Hirth, Scr. Met., 1972, 6 445.

    CAS  Article  Google Scholar 

  7. 7.

    R. Pasianot, E. J. Savino, Z. Y. Xie, and D. Farkas, Mater. Res. Soc. Symp. Proc., 1993, 291 85.

    CAS  Article  Google Scholar 

  8. 8.

    C. H. Woo and M. P. Puls, Philos. Mag., 1977, 35 727.

    CAS  Article  Google Scholar 

  9. 9.

    R. G. Hoagland, J. P. Hirth, and P. C. Gehlen, Philos. Mag., 1976, 34 413.

    CAS  Article  Google Scholar 

  10. 10.

    J. E. Sinclair, P. C. Gehlen, R. G. Hoagland, and J. P. Hirth, J. Appl. Phys., 1978, 49 3890.

    CAS  Article  Google Scholar 

  11. 11.

    Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59 3393.

    CAS  Article  Google Scholar 

  12. 12.

    M. P. Puls, Dislocation Modell. Phys. Syst., Proc. Int. Conf. (1981), 1980, 249.

    Google Scholar 

  13. 13.

    H. Kuan and J. P. Hirth, Mater. Sci. Eng., 1976, 22 113.

    Article  Google Scholar 

  14. 14.

    R. G. Hoagland, J. Mater. Res., 1994, 9 1805.

    CAS  Article  Google Scholar 

  15. 15.

    R. J. Kurtz, R. G. Hoagland, and J. P. Hirth, Phil. Mag. A, 1999, 79 665.

    CAS  Article  Google Scholar 

  16. 16.

    J. P. Hirth and J. Lothe, J. Appl. Phys., 1973, 44 1029.

    CAS  Article  Google Scholar 

  17. 17.

    J. H.v. d. M. D. Kuhlmann-Wilsdorf, H. G. F. Wilsdorf, Phil. Mag., 1952, 43 632.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles H. Henager Jr..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henager, C.H., Hoagland, R.G. Forces between Dislocations due to Dislocation Core Fields. MRS Online Proceedings Library 652, 77 (2000). https://doi.org/10.1557/PROC-652-Y7.7

Download citation