Comparison of Experimental and Computational Aspects of Grain Growth in Al-Foil

Abstract

Grain boundary and crystallographic orientation information of an Al-foil with a columnar grain structure is characterized by Electron Backscattered Diffraction (EBSD) technique. The starting microstructure and grain boundary properties are implemented as an input for the three- dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 °C. Good agreement is observed between the experimentally obtained microstructure and the simulated microstructure. The constitutive description of the grain boundary properties was based on a 1- parameter characterization of the variation in mobility with misorientation angle.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    B. L. Adams, D. Kinderlehrer, W. W. Mullins, A. D. Rollett, S. Ta’asan, Scripta Materialia 38, 531–536 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    M. P. Anderson, G. S. Grest, D. J. Srolovitz, Philosophical Magazine B 59, 293–329 (1989).

    Article  Google Scholar 

  3. 3.

    F. Wakai, N. Enomoto, H. Ogawa, Acta Materialia 48, 1297–1311 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    W. W. Mullins, Acta Metallurgica 37, 2979–2984 (1989).

    Article  Google Scholar 

  5. 5.

    D. J. Jensen, H. F. Poulsen, T. Lorentzen, Plastic Deformation, Recrystallization and Internal Stresses studied by a new 3D X-Ray Microscope, MRS Fall’99 Meeting, Boston, MA, USA (1999).

    Google Scholar 

  6. 6.

    A. Kuprat, Siam J. Scientific Computing 22, 535–560 (2000).

    Article  Google Scholar 

  7. 7.

    N.N. Carlson, K. Miller, Siam J. Scientific Computing 19, 766–798 (1998).

    Article  Google Scholar 

  8. 8.

    A. Kuprat,itLos Alamos National Laboratory Report LA-UR-00-3475, (2000).

    Google Scholar 

  9. 9.

    G. K. Straub, D. G. George, A. P. Kuprat, Los Alamos National Laboratory Report LA-UR-00-1, (2000).

    Google Scholar 

  10. 10.

    C. E. Shannon, Proc. IRE 10 (1949)

  11. 11.

    M. C. Demirel, B. S. El-Dasher, B. L. Adams, A. D. Rollett, Studies on the Accuracy of Electron Backscatter Diffraction Measurements. A. J. Schwartz, M. Kumar, and B. L. Adams, Ed., Electron Backscatter Diffraction in Materials Science, 65–74 (Kluwer Academic-Plenium Publishers, New York, 2000).

    Google Scholar 

  12. 12.

    C.-C. Yang, A. D. Rollett, W. W. Mullins, Scripta Materialia, submitted (2000).

    Google Scholar 

  13. 13.

    D. George, User Manual, http://www.t12.lanl.gov/≈lagrit/. (1995).

    Google Scholar 

  14. 14.

    D. Kinderlehrer, I. Livshits, S. Ta’asan, D. E. Mason, Multiscale Reconstruction of Grain Boundary Energy from Microstructure, Twelfth International Conference on Textures of Materials, Montréal, Canada (1999).

    Google Scholar 

  15. 15.

    For movies of the computer simulation in figure 1, see http://mimp.mems.cmu.edu/links.html (2000).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Melik C. Demirel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Demirel, M.C., Kuprat, A.P., George, D.C. et al. Comparison of Experimental and Computational Aspects of Grain Growth in Al-Foil. MRS Online Proceedings Library 652, 18 (2000). https://doi.org/10.1557/PROC-652-Y1.8

Download citation