Towards a Microscopic Description of Friction

Abstract

We investigate the response of an embedded system subject to an external drive using a microscopic model. The shear is shown to excite “shearons”, which are collective modes of the embedded system with well defined spatial and temporal patterns that dominate the frictional properties of the driven system. We demonstrate that the slip relaxation in stick-slip motion and memory effects are well described in terms of the creation and/or annihilation of shearons.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    F.P. Bowden and D. Tabor, The Friction and Lubrications of Solids (Claredon Press, Oxford,1985)

    Google Scholar 

  2. [1a]

    B.N.J. Persson, Sliding Friction, Physical Properties and Applications (Springer Verlag, Berlin, 1998)

    Google Scholar 

  3. [1b]

    S. Granick, Physics Today 52, 26 (1999).

    CAS  Article  Google Scholar 

  4. [2]

    H. Yoshizawa, P. McGuiggan, and J. Israelachvili, Science 259, 1305 (1993)

    CAS  Article  Google Scholar 

  5. [2a]

    S. H.-W. Hu, G.A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991)

    CAS  Article  Google Scholar 

  6. [2b]

    J. Klein and E. Kumacheva, Science 269, 816 (1995)

    CAS  Article  Google Scholar 

  7. [2c]

    A.D. Berman, W.A. Drucker, and J. Israelachvili, Langmuir 12, 4559 (1996).

    CAS  Article  Google Scholar 

  8. [[3]

    H. Yoshizawa, P. McGuiggan, and J.N. Israelachvili, Science 259, 1305 (1993)

    CAS  Article  Google Scholar 

  9. [3a]

    G. Reiter, L. Demirel, and S. Granick, Science 263, 1741 (1994)

    CAS  Article  Google Scholar 

  10. [3b]

    P.A. Thompson, M.O. Robbins, and G.S. Grest, Isr. J. of Chem. 35, 93 (1995).

    CAS  Article  Google Scholar 

  11. [4]

    G.A. Tomlinson, Phil. Mag. 7, 905 (1929); P.A. Tompson, M.O. Robbins, and G.S. Grest, Isr. J. Chem. 35, 93 (1995)

    CAS  Article  Google Scholar 

  12. [4a]

    J.M. Carlson and A.A. Batista, Phys. Rev. E 53, 4253 (1996)

    Article  Google Scholar 

  13. [4b]

    A.A. Batista and J.M. Carlson, Phys. Rev. E 57, 4986 (1998)

    CAS  Article  Google Scholar 

  14. [4c]

    J.P. Gao, W.D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997)

    CAS  Article  Google Scholar 

  15. [4d]

    V. Zaloj, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 81, 1227 (1998)

    CAS  Article  Google Scholar 

  16. [4e]

    F.-J. Elmer, Phys. Rev. E 57, R4903 (1998)

    CAS  Article  Google Scholar 

  17. [4f]

    T. Baumberger and C. Caroli, Eur. Phys. J. B 4, 13 (1998)

    CAS  Article  Google Scholar 

  18. [4g]

    J.B. Sokoloff, Phys. Rev. B 51, 15573 (1995)

    CAS  Article  Google Scholar 

  19. [4h]

    J.B. Sokoloff and M.S. Tomassone, Phys. Rev. B 57, 4888 (1998)

    CAS  Article  Google Scholar 

  20. [4i]

    J. Röder, J.E. Hammerberg, B.L. Holian, and A.R. Bishop, Phys. Rev. B 57, 2759 (1998)

    Article  Google Scholar 

  21. [4j]

    G. He, M.H. Müser, and M.O. Robbins, Science 284, 1650 (1999).

    CAS  Article  Google Scholar 

  22. [5]

    J.M. Carlson, J.S. Langer, and B.E. Shaw, Rev. Mod. Phys. 66, 657 (1994).

    Article  Google Scholar 

  23. [6]

    Y. Braiman, F. Family, and H.G.E. Hentschel, Phys. Rev. E 53, R3005 (1996) and Phys. Rev. B 55, 5491 (1997).

    CAS  Article  Google Scholar 

  24. [7]

    B.N.J. Persson, Phys. Rev. B 50, 4771 (1994)

    CAS  Article  Google Scholar 

  25. [7a].

    J.M. Carlson and A.A. Batista, Phys. Rev. E 53, 4153 (1996).

    CAS  Article  Google Scholar 

  26. [8]

    M.G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. E 54, 6485 (1996)

    CAS  Article  Google Scholar 

  27. [8a]

    M.G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 77, 683 (1996).

    CAS  Article  Google Scholar 

  28. [9]

    A.D. Berman, W.A. Ducker, and J.N. Israelachvili, Langmuir 12, 4559 (1996).

  29. [10]

    M.G. Rozman, M. Urbakh, and J. Klafter, Europhys. Lett. 39, 183 (1997).

    CAS  Article  Google Scholar 

  30. [11]

    M.G. Rozman, M. Urbakh, J. Klafter, and F.-J. Elmer, J. Phys. Chem. 102, 7924 (1998)

    CAS  Article  Google Scholar 

  31. [11a]

    V. Zaloj, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 82, 4823 (1999).

    CAS  Article  Google Scholar 

  32. [12]

    M. Porto, M. Urbakh, and J. Klafter, J. Phys. Chem. B 104, 3791 (2000)

    CAS  Article  Google Scholar 

  33. [12a]

    M. Porto, M. Urbakh, and J. Klafter, Europhys. Lett. 50, 326 (2000).

    CAS  Article  Google Scholar 

  34. [12b]

    M. Porto, V. Zaloj, M. Urbakh, and J. Klafter, Trib. Lett. (in print).

  35. [13]

    M. Weiss and F.-J. Elmer, Z. Phys. B 104, 55 (1997).

    CAS  Article  Google Scholar 

  36. [14]

    E.D. Smith, M.O. Robbins, and M. Cieplak, Phys. Rev. B 54, 8252 (1996)

    CAS  Article  Google Scholar 

  37. [14a]

    Y. Braiman, H.G.E. Hentschel, F. Family, C. Mak, and J. Krim, Phys. Rev. E 59, R4737 (1999)

    CAS  Article  Google Scholar 

  38. [14b]

    H.G.E. Hentschel, F. Family, and Y. Braiman, Phys. Rev. Lett. 83, 104 (1999).

    CAS  Article  Google Scholar 

  39. [15]

    H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97, 11300 (1993).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Markus Porto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Porto, M., Zaloj, V., Urbakh, M. et al. Towards a Microscopic Description of Friction. MRS Online Proceedings Library 651, 431 (2000). https://doi.org/10.1557/PROC-651-T4.3.1

Download citation