Skip to main content
Log in

Towards a Microscopic Description of Friction

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We investigate the response of an embedded system subject to an external drive using a microscopic model. The shear is shown to excite “shearons”, which are collective modes of the embedded system with well defined spatial and temporal patterns that dominate the frictional properties of the driven system. We demonstrate that the slip relaxation in stick-slip motion and memory effects are well described in terms of the creation and/or annihilation of shearons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.P. Bowden and D. Tabor, The Friction and Lubrications of Solids (Claredon Press, Oxford,1985)

    Google Scholar 

  2. B.N.J. Persson, Sliding Friction, Physical Properties and Applications (Springer Verlag, Berlin, 1998)

    Book  Google Scholar 

  3. S. Granick, Physics Today 52, 26 (1999).

    Article  CAS  Google Scholar 

  4. H. Yoshizawa, P. McGuiggan, and J. Israelachvili, Science 259, 1305 (1993)

    Article  CAS  Google Scholar 

  5. S. H.-W. Hu, G.A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991)

    Article  CAS  Google Scholar 

  6. J. Klein and E. Kumacheva, Science 269, 816 (1995)

    Article  CAS  Google Scholar 

  7. A.D. Berman, W.A. Drucker, and J. Israelachvili, Langmuir 12, 4559 (1996).

    Article  CAS  Google Scholar 

  8. H. Yoshizawa, P. McGuiggan, and J.N. Israelachvili, Science 259, 1305 (1993)

    Article  CAS  Google Scholar 

  9. G. Reiter, L. Demirel, and S. Granick, Science 263, 1741 (1994)

    Article  CAS  Google Scholar 

  10. P.A. Thompson, M.O. Robbins, and G.S. Grest, Isr. J. of Chem. 35, 93 (1995).

    Article  CAS  Google Scholar 

  11. G.A. Tomlinson, Phil. Mag. 7, 905 (1929); P.A. Tompson, M.O. Robbins, and G.S. Grest, Isr. J. Chem. 35, 93 (1995)

    Article  CAS  Google Scholar 

  12. J.M. Carlson and A.A. Batista, Phys. Rev. E 53, 4253 (1996)

    Article  Google Scholar 

  13. A.A. Batista and J.M. Carlson, Phys. Rev. E 57, 4986 (1998)

    Article  CAS  Google Scholar 

  14. J.P. Gao, W.D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997)

    Article  CAS  Google Scholar 

  15. V. Zaloj, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 81, 1227 (1998)

    Article  CAS  Google Scholar 

  16. F.-J. Elmer, Phys. Rev. E 57, R4903 (1998)

    Article  CAS  Google Scholar 

  17. T. Baumberger and C. Caroli, Eur. Phys. J. B 4, 13 (1998)

    Article  CAS  Google Scholar 

  18. J.B. Sokoloff, Phys. Rev. B 51, 15573 (1995)

    Article  CAS  Google Scholar 

  19. J.B. Sokoloff and M.S. Tomassone, Phys. Rev. B 57, 4888 (1998)

    Article  CAS  Google Scholar 

  20. J. Röder, J.E. Hammerberg, B.L. Holian, and A.R. Bishop, Phys. Rev. B 57, 2759 (1998)

    Article  Google Scholar 

  21. G. He, M.H. Müser, and M.O. Robbins, Science 284, 1650 (1999).

    Article  CAS  Google Scholar 

  22. J.M. Carlson, J.S. Langer, and B.E. Shaw, Rev. Mod. Phys. 66, 657 (1994).

    Article  Google Scholar 

  23. Y. Braiman, F. Family, and H.G.E. Hentschel, Phys. Rev. E 53, R3005 (1996) and Phys. Rev. B 55, 5491 (1997).

    Article  CAS  Google Scholar 

  24. B.N.J. Persson, Phys. Rev. B 50, 4771 (1994)

    Article  CAS  Google Scholar 

  25. J.M. Carlson and A.A. Batista, Phys. Rev. E 53, 4153 (1996).

    Article  CAS  Google Scholar 

  26. M.G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. E 54, 6485 (1996)

    Article  CAS  Google Scholar 

  27. M.G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 77, 683 (1996).

    Article  CAS  Google Scholar 

  28. A.D. Berman, W.A. Ducker, and J.N. Israelachvili, Langmuir 12, 4559 (1996).

  29. M.G. Rozman, M. Urbakh, and J. Klafter, Europhys. Lett. 39, 183 (1997).

    Article  CAS  Google Scholar 

  30. M.G. Rozman, M. Urbakh, J. Klafter, and F.-J. Elmer, J. Phys. Chem. 102, 7924 (1998)

    Article  CAS  Google Scholar 

  31. V. Zaloj, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 82, 4823 (1999).

    Article  CAS  Google Scholar 

  32. M. Porto, M. Urbakh, and J. Klafter, J. Phys. Chem. B 104, 3791 (2000)

    Article  CAS  Google Scholar 

  33. M. Porto, M. Urbakh, and J. Klafter, Europhys. Lett. 50, 326 (2000).

    Article  CAS  Google Scholar 

  34. M. Porto, V. Zaloj, M. Urbakh, and J. Klafter, Trib. Lett. (in print).

  35. M. Weiss and F.-J. Elmer, Z. Phys. B 104, 55 (1997).

    Article  CAS  Google Scholar 

  36. E.D. Smith, M.O. Robbins, and M. Cieplak, Phys. Rev. B 54, 8252 (1996)

    Article  CAS  Google Scholar 

  37. Y. Braiman, H.G.E. Hentschel, F. Family, C. Mak, and J. Krim, Phys. Rev. E 59, R4737 (1999)

    Article  CAS  Google Scholar 

  38. H.G.E. Hentschel, F. Family, and Y. Braiman, Phys. Rev. Lett. 83, 104 (1999).

    Article  CAS  Google Scholar 

  39. H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97, 11300 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porto, M., Zaloj, V., Urbakh, M. et al. Towards a Microscopic Description of Friction. MRS Online Proceedings Library 651, 431 (2000). https://doi.org/10.1557/PROC-651-T4.3.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-651-T4.3.1

Navigation