Skip to main content
Log in

Surface defects on MgO thin films: Their detection using metastable impact electron spectroscopy and interaction with probe molecules

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

MgO thin films having different defect densities are explored in this study using metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), and scanning tunneling microscopy (STM). Surface point defects on MgO exhibit themselves in both the MIES and UPS spectra as a feature approximately 2 eV above the valance band, whereas extended defects are only observed spectroscopically as a broadening of the O 2p band. The interaction of NO and N2O with the MgO surface as a function of surface defect density is explored. Upon adsorption on MgO thin films at 100K, both NO and N2O show the development of three features which coincide with a standard gas phase N2O spectrum. The saturation coverage of N2O from NO adsorption increases with increasing defect density, indicating that defect sites are mainly responsible for N2O formation. STM images confirm the increase of thin film defect density upon thermal quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Henrich, P. A. Cox, The Surface Science of Metal Oxides, (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  2. S. C. Street, C. Xu, and D. W. Goodman. Annu.Rev.Phys.Chem. 48, 43 (1997).

    Article  CAS  Google Scholar 

  3. D. W. Goodman. Chem.Rev. 95, 523 (1995).

    Article  CAS  Google Scholar 

  4. J. W. He, and P. J. Moller. Chem.Phys.Lett. 129, 13 (1986).

    Article  CAS  Google Scholar 

  5. P. R. Underhill, and T. E. Gallon. Solid State Commun. 43, 9 (1982).

    Article  CAS  Google Scholar 

  6. V. E. Henrich, and R.L. Kurtz J.Vac.Sci.Technol.A. 18, 416 (1981).

    Article  CAS  Google Scholar 

  7. D. Peterka, C. Tegenkamp, K. M. Schroder, W. Ernst, and H. Pfnur. Surf.Sci. 431, 146 (1999).

    Article  CAS  Google Scholar 

  8. M. C. Wu, C. M. Truong, and D. W. Goodman. Phys.Rev.B: Condens.Matter 46, 12688 (1992).

    Article  CAS  Google Scholar 

  9. E. Giamello, A. Ferrero, S. Coluccia, and A. Zecchina. J.Phys.Chem. 95, 9385 (1991).

    Article  CAS  Google Scholar 

  10. Y. Chen, T. Tohver, J. Narayan, and M. M. Abraham. Phys.Rev.B 16, 5535 (1979).

    Article  Google Scholar 

  11. Y. Harada, S. Masuda, and H. Ozaki. Chem.Rev. 97, 1897 (1997).

    Article  CAS  Google Scholar 

  12. J. Gunster, G. Liu, J. Stultz, and D. W. Goodman. J.Chem.Phys. 110, 2558 (1999).

    Article  CAS  Google Scholar 

  13. J. S. Corneille, J. W. He, and D. W. Goodman. Surf.Sci. 306, 269 (1994).

    Article  CAS  Google Scholar 

  14. P. A. Cox, and A. A. Williams. Surf.Sci. 175, L782–L786 (1986).

    Article  CAS  Google Scholar 

  15. L. N. Kantorovich, A. L. Shluger, P. V. Sushko, and A. M. Stoneham. Surf.Sci. 444, 31 (2000).

    Article  CAS  Google Scholar 

  16. D. Ochs, W. MausFriedrichs, M. Brause, J. Gunster, V. Kempter, V. Puchin, A. Shluger, and L. Kantorovich. Surf.Sci. 365, 557 (1996).

    Article  CAS  Google Scholar 

  17. L. H. Tjeng, A. R. Vos, and G. A. Sawatzky. Surf.Sci. 235, 269 (1990).

    Article  CAS  Google Scholar 

  18. W. MausFriedrichs, M. Wehrhahn, S. Dieckhoff, and V. Kempter. Surf.Sci. 237, 257 (1990).

    Article  CAS  Google Scholar 

  19. W. MausFriedrichs, S. Dieckhoff, and V. Kempter. Surf.Sci. 249, 149 (1991).

    Article  CAS  Google Scholar 

  20. D. Ochs, M. Brause, P. Stracke, S. Krischok, F. Wiegershaus, W. MausFriedrichs, V. Kempter, V. E. Puchin, and A. L. Shluger. Surf.Sci. 383, 162 (1997).

    Article  CAS  Google Scholar 

  21. L. N. Kantorovich, J. M. Holender, and M. J. Gillan. Surf.Sci. 343, 221 (1995).

    Article  CAS  Google Scholar 

  22. T. Gotoh, Y. Fukunaga, and S. Takagi. Surf.Sci. 358, 690 (1996).

    Article  Google Scholar 

  23. R. Wichtendahl, M. Rodriguez-Rodrigo, U. Hartel, H. Kuhlenbeck, and H. J. Freund. Phys.Status Solidi A 173, 93 (1999).

    Article  CAS  Google Scholar 

  24. W. A. Brown D. A. King. J.Phys.Chem.B 104, 2578 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stultz, J.A., Kolmakov, A., Lai, X. et al. Surface defects on MgO thin films: Their detection using metastable impact electron spectroscopy and interaction with probe molecules. MRS Online Proceedings Library 648, 95 (2000). https://doi.org/10.1557/PROC-648-P9.5

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-648-P9.5

Navigation