Skip to main content
Log in

Growth Front Roughening of Room Temperature Deposited Oligomer Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Growth front scaling aspects are investigated for PPV-type oligomer thin films vapor- deposited onto silicon substrates at room temperature. For film thickness d~15-300 nm, commonly used in optoelectronic devices, correlation function measurement by atomic force microscopy yields roughness exponents in the range H=0.45±0.04, and an rms roughness amplitude which evolves with film thickness as a power law σ dβ with β=0.28±0.05. The non-Gaussian height distribution and the measured scaling exponents (H and β) suggest a roughening mechanism close to that described by the Kardar-Parisi-Zhang scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Meakin, Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, Cambridge, 1998) see also here p. 408; J. Krim and G. Palasantzas, Int. J. of Mod. Phys. B 9, 599 (1995); A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  2. Polymers for Electronic and Photonic Applications, edited by C.P. Wong (Academic Press, Boston, 1993); T.-M. Lu and J. A. Moore, Mat. Res. Soc. Bull. 20, 28 (1997).

    Google Scholar 

  3. G. W. Collins, S. A. Letts, E. M. Fearon, R. L. McEachern, and T. P. Bernat, Phys. Rev. Lett. 73, 708 (1994).

    Article  CAS  Google Scholar 

  4. F. Biscarini, P. Samorí, O. Greco, and R. Zamboni, Phys. Rev. Lett. 78, 2389 (1997); F. Biscarini, R. Zamboni, P. Samori, P. Ostoja, C. Taliani, Phys. Rev. B 52, 14868 (1995).

    Article  CAS  Google Scholar 

  5. Y.-P. Zhao, J. B. Fortin, G. Bonvallet, G.-C. Wang and T.-M. Lu, Phys. Rev. Lett. 85, 3229 (2000).

    Article  CAS  Google Scholar 

  6. P. F. van Hutten, V. V. Krasnikov, and G. Hadziioannou, Acc. Chem. Res. 32, 257 (1999).

    Article  Google Scholar 

  7. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A. J. Spiering, R. A. J. Janssen, P. Herwig, D. M. de Leeuw, Nature 401, 685 (1999).

    Article  CAS  Google Scholar 

  8. Semiconducting Polymers: Chemistry, Physics and Engineering, edited by G. Hadziioannou and P.F. van Hutten (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  9. H. J. Brouwer, V. V. Krasnikov, T. A. Pham, R. E. Gill, P. F. van Hutten, and G. Hadziioannou, Chemical Phys. 65, 227 (1998).

    Google Scholar 

  10. D. Tsamouras, W. Geens, P. F. van Hutten, J. Poortmans, and G. Hadziioannou, Polym. Mater. Sci. Eng. 83, 293 (2000). For the technique of thermal gravimetric analysis (TGA) see A. Blaezek, Thermal Analysis (Van Nostrand Reinhold, London, 1972); B. Dickens, J.H. Flynn in Polymer Characterization: Spectroscopic, Chromatographic, and Physical Instrumental Methods edited by C.D. Craver (American Chemical Society, Washington D.C., 1983).

    CAS  Google Scholar 

  11. R. E. Gill, A. Meetsma, and G. Hadziioannou, Adv. Mater. 8, 212 (1996).

    Article  CAS  Google Scholar 

  12. See for example D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, Revised Edition (Oxford University Press, New York, 1994).

    Google Scholar 

  13. G. Palasantzas, Phys. Rev. E 56, 1254 (1997).

    Article  CAS  Google Scholar 

  14. G. Palasantzas and J. Krim, Phys. Rev. Lett. 73, 3564 (1994).

    Article  CAS  Google Scholar 

  15. W. E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).

    Article  CAS  Google Scholar 

  16. Z. -W. Lai and S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991).

    Article  CAS  Google Scholar 

  17. M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett. 56, 889 (1986). For skewed distribution aspects in Directed Polymer Problems in Random Media (DPRM) related to KPZ growth see also T. Halpin-Heally, Phys. Rep. 254, 215 (1995).

    Article  CAS  Google Scholar 

  18. M. Forest and L. -H. Tang, Phys. Rev. Lett. 64, 1405 (1991).

    Article  Google Scholar 

  19. J. Aue and J. Th. M. De Hosson, Appl. Phys. Lett. 71, 1347 (1997).

    Article  CAS  Google Scholar 

  20. F. Biscarini, P. Samori, A. Lauria, P. Ostoja, R. Zamboni, C. Taliani, P. Viville, R. Lazzaroni, and J. L. Bredas, Thin Sol. Films 284-285, 439 (1996).

    Article  CAS  Google Scholar 

  21. G. Palsantzas, Z. P. Zhao, G. -C. Wang, T. -M. Lu, J. Barnas, and J. Th. M. De Hosson, Phys. Rev. B 61, 11109 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsamouras, D., Palasantzas, G., De Hosson, J.T.M. et al. Growth Front Roughening of Room Temperature Deposited Oligomer Thin Films. MRS Online Proceedings Library 648, 620 (2000). https://doi.org/10.1557/PROC-648-P6.20

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-648-P6.20

Navigation