The nature of islanding in the InGaAs / GaAs epitaxial system


The interest in the phenomenon of islanding in a range of semiconductor systems is in part due to the fundamental importance of the Stranski-Krastanow transition but also driven by potential device applications of self-organized quantum dot arrays. However, the mechanism underlying the island formation is still to a significant degree unclear. In the present work, we focus on the epitaxial InGaAs / GaAs(001) system, with layer deposition by molecular beam epitaxy. Atomic force microscopy is used to measure the surface topography of nominally 4nm thick InxGa1-xAs films. It is shown that the growth mode switches abruptly from flat layer to island growth if a critical Indium composition of x(In)?0.25 is reached. The structure of such layers during early stages of growth is examined using energy-filtered transmission electron microscopy. Indium gradients in the islanded layers are measured and the driving force for the islanding transition itself is considered.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Guha, A. Madhukar and K.C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).

    CAS  Article  Google Scholar 

  2. 2.

    D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    J. Tersoff and F.K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    A.G. Cullis, A.J. Pidduck and M.T. Emeny, Phys. Rev. Lett. 75, 2368 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    A.G. Cullis, A.J. Pidduck and M.T. Emeny, J. Cryst. Growth 158, 15 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    J. Tersoff, Phys. Rev. Lett. 77, 2017 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    P. Venezuela and J. Tersoff, Phys. Rev. B 58, 10871 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    R. Sauer, S. Nilsson, P. Röntgen, W. Heuberger, V. Graf, A. Hangleiter and R. Spycher, Phys. Rev. B 46, 9525 (1992).

    CAS  Article  Google Scholar 

  9. 9.

    Y.C. Kao, F.G. Celli and H.Y. Liu, J. Vac. Sci. Technol. B 11, 1923 (1993).

    Article  Google Scholar 

  10. 10.

    H. Saitoh, K. Nishi and S. Sugou, Appl. Phys. Lett. 73, 2742 (1998).

    Article  Google Scholar 

  11. 11.

    R. Bierwolf, M. Hohenstein, F. Phillipp, O. Brandt, G.E. Crook and K. Ploog, Ultramicroscopy 49, 273 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    P.H. Jouneau, A. Tardot, G. Feuillet, H. Mariette and J. Cibert, J. Appl. Phys. 75, 7310 (1994).

    CAS  Article  Google Scholar 

  13. 13.

    M.M. Treacy and J.M. Gibson, J. Vac. Sci. Technol. B 4, 1458 (1986).

    CAS  Article  Google Scholar 

  14. 14.

    T. Benabbas, P. Francois, Y. Androussi and A. Lefebvre, J. Appl. Phys. 80, 2763 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    X.Z. Liao, J. Zou, D.J.H. Cockayne, R. Leon and C. Lobo, Phys. Rev. Lett. 82, 5148 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    T. Walther, C.B. Boothroyd, C.J. Humphreys and A.G. Cullis, Proc. 13th Int. Conf. Electr. Microsc. 1, 365 (1994), ed. B. Jouffrey and C. Colliex (les editions de physique, Les Ulis)

    Google Scholar 

  17. 17.

    T. Walther, C.B. Boothroyd and C.J. Humphreys, Inst. Phys. Conf. Ser. 146, 11 (1995).

    CAS  Google Scholar 

  18. 18.

    K. Tillmann, A. Thust, M. Lentzen, P. Swiatek, A. Förster, K. Urban, W. Laufs, D. Gerthsen, T. Remmele and A. Rosenauer, Phil. Mag. Lett. 74, 309 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    S. Kret, C. Delamarre, J.Y. Laval and A. Dubon, Phil. Mag. Lett. 77, 249 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    S. Kret, T. Benabbas, C. Delamarre, Y. Androussi, A. Dubon, J.Y. Laval and A. Lefebvre, J. Appl. Phys. 86, 1988 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    A. Rosenauer, U. Fischer, D. Gerthsen and A. Förster, Appl. Phys. Lett. 71, 3868 (1997).

    CAS  Article  Google Scholar 

  22. 22.

    R. Schneider, H. Kirmse, I. Hahnert and W. Neumann, Fres. J. Anal. Chem. 365, 217 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    F. Hofer, P. Warbichler and W. Grogger, Ultramicroscopy 59, 15 (1995).

    CAS  Article  Google Scholar 

  24. 24.

    T. Walther, C.J. Humphreys, A.G. Cullis and D. J. Robbins, Mater. Sci. For. 196-201, 505 (1995).

    CAS  Google Scholar 

  25. 25.

    T. Walther and C.J. Humphreys, J. Cryst. Growth 197, 113 (1999).

    CAS  Article  Google Scholar 

  26. 26.

    N. Liu, J. Tersoff, O. Baklenov, A.L. Holmes and C.K. Shih, Phys. Rev. Lett. 84, 334 (2000).

    CAS  Article  Google Scholar 

  27. 27.

    O. Dehaese, X. Wallart and F. Mollot, Appl. Phys. Lett. 66, 52 (1995).

    CAS  Article  Google Scholar 

  28. 28.

    D.J. Norris, A.G. Cullis, T.J. Grasby and E.H.C. Parker, J. Appl. Phys. 86, 7183 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    F. Glas, C. Guille, P. Henoc and F. Houzay, Inst. Phys. Conf. Ser. 87, 71 (1987).

    CAS  Google Scholar 

  30. 30.

    H. Toyoshima, T. Niwa, J. Yamazaki and A. Okamoto, Appl. Phys. Lett. 63, 821 (1993).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. Walther.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walther, T., Cullis, A.G., Norris, D.J. et al. The nature of islanding in the InGaAs / GaAs epitaxial system. MRS Online Proceedings Library 648, 126 (2000).

Download citation