Skip to main content
Log in

The nature of islanding in the InGaAs / GaAs epitaxial system

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The interest in the phenomenon of islanding in a range of semiconductor systems is in part due to the fundamental importance of the Stranski-Krastanow transition but also driven by potential device applications of self-organized quantum dot arrays. However, the mechanism underlying the island formation is still to a significant degree unclear. In the present work, we focus on the epitaxial InGaAs / GaAs(001) system, with layer deposition by molecular beam epitaxy. Atomic force microscopy is used to measure the surface topography of nominally 4nm thick InxGa1-xAs films. It is shown that the growth mode switches abruptly from flat layer to island growth if a critical Indium composition of x(In)?0.25 is reached. The structure of such layers during early stages of growth is examined using energy-filtered transmission electron microscopy. Indium gradients in the islanded layers are measured and the driving force for the islanding transition itself is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Guha, A. Madhukar and K.C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).

    Article  CAS  Google Scholar 

  2. D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).

    Article  CAS  Google Scholar 

  3. J. Tersoff and F.K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).

    Article  CAS  Google Scholar 

  4. A.G. Cullis, A.J. Pidduck and M.T. Emeny, Phys. Rev. Lett. 75, 2368 (1995).

    Article  CAS  Google Scholar 

  5. A.G. Cullis, A.J. Pidduck and M.T. Emeny, J. Cryst. Growth 158, 15 (1996).

    Article  CAS  Google Scholar 

  6. J. Tersoff, Phys. Rev. Lett. 77, 2017 (1996).

    Article  CAS  Google Scholar 

  7. P. Venezuela and J. Tersoff, Phys. Rev. B 58, 10871 (1998).

    Article  CAS  Google Scholar 

  8. R. Sauer, S. Nilsson, P. Röntgen, W. Heuberger, V. Graf, A. Hangleiter and R. Spycher, Phys. Rev. B 46, 9525 (1992).

    Article  CAS  Google Scholar 

  9. Y.C. Kao, F.G. Celli and H.Y. Liu, J. Vac. Sci. Technol. B 11, 1923 (1993).

    Article  Google Scholar 

  10. H. Saitoh, K. Nishi and S. Sugou, Appl. Phys. Lett. 73, 2742 (1998).

    Article  Google Scholar 

  11. R. Bierwolf, M. Hohenstein, F. Phillipp, O. Brandt, G.E. Crook and K. Ploog, Ultramicroscopy 49, 273 (1993).

    Article  CAS  Google Scholar 

  12. P.H. Jouneau, A. Tardot, G. Feuillet, H. Mariette and J. Cibert, J. Appl. Phys. 75, 7310 (1994).

    Article  CAS  Google Scholar 

  13. M.M. Treacy and J.M. Gibson, J. Vac. Sci. Technol. B 4, 1458 (1986).

    Article  CAS  Google Scholar 

  14. T. Benabbas, P. Francois, Y. Androussi and A. Lefebvre, J. Appl. Phys. 80, 2763 (1996).

    Article  CAS  Google Scholar 

  15. X.Z. Liao, J. Zou, D.J.H. Cockayne, R. Leon and C. Lobo, Phys. Rev. Lett. 82, 5148 (1999).

    Article  CAS  Google Scholar 

  16. T. Walther, C.B. Boothroyd, C.J. Humphreys and A.G. Cullis, Proc. 13th Int. Conf. Electr. Microsc. 1, 365 (1994), ed. B. Jouffrey and C. Colliex (les editions de physique, Les Ulis)

    Google Scholar 

  17. T. Walther, C.B. Boothroyd and C.J. Humphreys, Inst. Phys. Conf. Ser. 146, 11 (1995).

    CAS  Google Scholar 

  18. K. Tillmann, A. Thust, M. Lentzen, P. Swiatek, A. Förster, K. Urban, W. Laufs, D. Gerthsen, T. Remmele and A. Rosenauer, Phil. Mag. Lett. 74, 309 (1996).

    Article  CAS  Google Scholar 

  19. S. Kret, C. Delamarre, J.Y. Laval and A. Dubon, Phil. Mag. Lett. 77, 249 (1998).

    Article  CAS  Google Scholar 

  20. S. Kret, T. Benabbas, C. Delamarre, Y. Androussi, A. Dubon, J.Y. Laval and A. Lefebvre, J. Appl. Phys. 86, 1988 (1999).

    Article  CAS  Google Scholar 

  21. A. Rosenauer, U. Fischer, D. Gerthsen and A. Förster, Appl. Phys. Lett. 71, 3868 (1997).

    Article  CAS  Google Scholar 

  22. R. Schneider, H. Kirmse, I. Hahnert and W. Neumann, Fres. J. Anal. Chem. 365, 217 (1999).

    Article  CAS  Google Scholar 

  23. F. Hofer, P. Warbichler and W. Grogger, Ultramicroscopy 59, 15 (1995).

    Article  CAS  Google Scholar 

  24. T. Walther, C.J. Humphreys, A.G. Cullis and D. J. Robbins, Mater. Sci. For. 196-201, 505 (1995).

    CAS  Google Scholar 

  25. T. Walther and C.J. Humphreys, J. Cryst. Growth 197, 113 (1999).

    Article  CAS  Google Scholar 

  26. N. Liu, J. Tersoff, O. Baklenov, A.L. Holmes and C.K. Shih, Phys. Rev. Lett. 84, 334 (2000).

    Article  CAS  Google Scholar 

  27. O. Dehaese, X. Wallart and F. Mollot, Appl. Phys. Lett. 66, 52 (1995).

    Article  CAS  Google Scholar 

  28. D.J. Norris, A.G. Cullis, T.J. Grasby and E.H.C. Parker, J. Appl. Phys. 86, 7183 (1999).

    Article  CAS  Google Scholar 

  29. F. Glas, C. Guille, P. Henoc and F. Houzay, Inst. Phys. Conf. Ser. 87, 71 (1987).

    CAS  Google Scholar 

  30. H. Toyoshima, T. Niwa, J. Yamazaki and A. Okamoto, Appl. Phys. Lett. 63, 821 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, T., Cullis, A.G., Norris, D.J. et al. The nature of islanding in the InGaAs / GaAs epitaxial system. MRS Online Proceedings Library 648, 126 (2000). https://doi.org/10.1557/PROC-648-P12.6

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-648-P12.6

Navigation