Abstract
Diffusivity of a strained heterostructure was theoretically investigated, and general diffusion equations with strain potential were deduced. There was an additional diffusivity by the strain potential gradient as well as by the concentration gradient. The strain-induced diffusivity was a function of concentration, and its temperature dependence was formulated. The activation energy of the strain-induced diffusivity was measured by high-resolution transmission electron microscopy. This result can be generally applied for the investigation of the diffusion in strained heterostructures.
This is a preview of subscription content, access via your institution.
References
- 1.
C.K. Maiti, L.K. Bera, and S. Chattopadhyay, Semicon. Sci. Technol. 13, 1225 (1998).
- 2.
H. Klauk, T.N. Jackson, S.F. Nelson, and J.O. Chu, Appl. Phys. Lett. 68, 1975 (1996).
- 3.
N.E.B. Cowern, P.C. Zalm, P. VAN DER Sluis, D.J. Gravesteijn, and W.B. de Boer, Phys. Rev. Lett. 72, 2585 (1994).
- 4.
B. Voigtländer, and M. Kästner, Phys. Rev. B 60, R5212 (1999).
- 5.
J.-M. Baribeau, R. Pascual, and S. Saitomo, Appl. Phys. Lett. 57, 1502 (1990).
- 6.
K. Dettmer, W. Freiman, M. Levy, Y.L. Khait, and R. Beserman, Appl. Phys. Lett. 66, 2376 (1995).
- 7.
L. Kubler, D. Dentel, J.L. Bischoff, C. Ghica, C. Ulhaq-Bouillet, and J. Werckmann, Appl. Phys. Lett. 73, 1053 (1998).
- 8.
J.H. van der Merwe, J. Appl. Phys. 34, 123 (1963).
- 9.
P.G. Shewmon, Diffusion in Solids, McGraw-Hill, 1963, pp. 115–136.
- 10.
S.S. Iyer, and F.K. LeGoues, J. Appl. Phys. 65, 4693 (1989).
- 11.
J. Crank, The Mathematics of Diffusion, Clarendon Press, 1975, pp. 104–136.
- 12.
G.L. McVay, and A.R. DuCharme, Phys. Rev. B 9, 627 (1974).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lim, Y.S., Lee, J.Y., Kim, H.S. et al. Strain-Induced Diffusion in Strained Sige/Si Heterostructures. MRS Online Proceedings Library 648, 112 (2000). https://doi.org/10.1557/PROC-648-P11.2
Published: