Mechanical Properties of γ-TiAl Based Alloys at Elevated Temperatures


Mechanical loss (internal friction) and creep experiments were carried out on specimens of a Ti-46.5at.%Al-4at.%(Cr,Nb,Ta,B) alloy with differently spaced fully lamellar microstructures. The creep tests were performed in a temperature range of 970 K to 1070 K at 175 MPa. For the mechanical loss measurements a low frequency subresonance torsion apparatus was applied, operating in the frequency range of 0.01 Hz to 10 Hz. The mechanical spectra show two phenomena: (i) A loss peak of Debye-type at 900 K (0.01 Hz) which is controlled by an activation enthalpy of 3.0 eV. The loss peak is related to thermally activated (reversible) motion of dislocation segments which are pinned at the lamellae interface and within gamma lamellae. (ii) A viscoelastic high temperature background above 1000 K with an activation enthalpy of 3.8 eV. This value agrees well with the activation enthalpy of 3.6 eV from creep experiments. Both high temperature background as well as creep are assigned to diffusion controlled climb of dislocations.

This is a preview of subscription content, access via your institution.


  1. [1]

    Y.-W. Kim, J. Met, 46, 30 (1994).

    CAS  Google Scholar 

  2. [2]

    H. Clemens and H. Kestler, Advanced Engineering Materials, 9, 551 (2000).

    Article  Google Scholar 

  3. [3]

    H. Clemens, W. Glatz, N. Eberhard, H.P. Martinz, and W. Knabl, Mat. Res. Soc. Symp. Proc. 460 (1997).

  4. [4]

    H. Clemens and F. Jeglitsch, Pract. Metallography, 37, 194 (2000).

    CAS  Google Scholar 

  5. [5]

    A. Chatterjee, U. Bolay, U. Sattler, and H. Clemens in: Intermetallics and Superalloys, Vol 10 (Eds. D.G. Morris, S. Naka, P. Caron), Wiley VCH-Weinheim, 233 (2000).

    CAS  Google Scholar 

  6. [6]

    M. Weller, M. Hirscher, E. Schweizer, and H. Kronmüller, J. de Physique, IV 6, C8, 231 (1996).

    Google Scholar 

  7. [7]

    M. Weller, A. Chatterjee, G. Hanczok, and H. Clemens, J. of Alloys and Compounds 310, 134 (2000).

    CAS  Article  Google Scholar 

  8. [8]

    A. Lakki, R. Herzog, M. Weller, H. Schubert, C. Reetz, O. Görke, M. Kilo, and G. Borchardt, J. European Ceramic Society 20, 285 (2000).

    CAS  Article  Google Scholar 

  9. [9]

    F. Appel, B.A. Beaven and R. Wagner, Acta Metall. Mater., 41, 1721 (1993).

    CAS  Article  Google Scholar 

  10. [10]

    M. Weller: J. de Physique IV 5, C7, 199 (1995).

    Google Scholar 

  11. [11]

    M. Hirscher, D. Schaible, H. Kronmüller, Intermetallics 7, 347 (1999).

    CAS  Article  Google Scholar 

  12. [12]

    A.S. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press N.Y., 1972).

    Google Scholar 

  13. [13]

    A. Chatterjee, unpublished results, (2000).

  14. [14]

    Ch. Herzig, T. Przeorski, and Y. Mishin, Intermetallics 7, 389 (1999).

    CAS  Article  Google Scholar 

  15. [15]

    W. Sprengel, N. Oikawa, and H. Nakajima, Intermetallics 4, 185 (1996).

    CAS  Article  Google Scholar 

Download references


We thank Prof. Dr. E. Arzt for helpful discussions and Plansee Aktiengesellschaft (Reutte, Austria) for providing sample material.

Author information



Corresponding author

Correspondence to M. Weller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weller, M., Chatterjee, A., Haneczok, G. et al. Mechanical Properties of γ-TiAl Based Alloys at Elevated Temperatures. MRS Online Proceedings Library 646, 92–97 (2000).

Download citation