The Effect of Cu-Macroalloying Additions to Rapidly Solidified NiAl Intermetallic Compound


The effects of two variables on the NiAl intermetallic compound were studied: 1) copper macroalloying additions and 2) rapid solidification processing. For that purpose, several NiCuAl alloys were vacuum induction melted and rapidly solidified by using a copper wheel, rotating at 15 m/s, under an argon atmosphere. Chemical analysis of as-rapidly solidified ribbons indicated, that four alloy compositions lie in the β-(Ni, Cu)Al field, one alloy composition lie in the boundary of the β-(Ni, Cu)Al/(Ni, Cu)2Al3 fields, one alloy composition lies in the boundary of the β-(Ni, Cu)Al/β-(Ni, Cu)Al + (Ni, Cu)3Al fields and two alloy compositions lie in the β-(Ni, Cu)Al + (Ni, Cu)3Al field. Transmission electron microscopic observations carried out in as-rapidly solidified ribbons, revealed the presence of at least three main structures: i) β-(Ni, Cu)Al, ii) β-(Ni, Cu)Al + martensite (Ni, Cu)Al and iii) (Ni, Cu)3Al + martensite (Ni, Cu)Al. Microhardness Vickers and tensile test data indicated that alloys with a β-(Ni, Cu)Al + martensite (Ni, Cu)Al microstructure have improved room temperature ductility, reaching values of elongation up to 3.28 %.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. M. Schulson, The Int. J. of Powder Met., 23, 25 (1987).

    CAS  Google Scholar 

  2. 2.

    D. B. Miracle, Acta Metall., 41, 649 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    R. D. Neobe, R. R. Bowman and M. V. Nathal, Inter. Mater. Rev., 38, 193 (1993).

    Article  Google Scholar 

  4. 4.

    T. Hughes, E. P. Lautenschlager, J. B. Cohen and J. O. Brittain, J. of Appl. Phys., 42, 3705 (1971).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Umakoshi, in Materials Science and Technology, eds. R. W. Cahn, P. Haasen and E. J. Kramer, VHC Publishers Inc., 1, 254 (1991).

    Google Scholar 

  6. 6.

    D. B. Miracle and R. Darolia, Intermetallic Compounds, eds. J. H. Westbrook and R. L. Fleisher, John Wiley and Sons Ltd., 2, 53 (1994).

    Google Scholar 

  7. 7.

    P. Nagoal and I. Baker, Metall. Trans., 21A, 2281 (1990).

    Google Scholar 

  8. 8.

    I. Baker, P. Nagpal, F. Liu and P. R. Munroe, Acta Metall. Matter., 39, 1637 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    H. Jacobi and H. J. Engell, Acta Metallurgica, 19, 701 (1971).

    CAS  Article  Google Scholar 

  10. 10.

    A. J. Bradley and H. Lipson, Proc. Roy. Soc., 177A, 421 (1938).

  11. 11.

    T. Cheng, J. of Mat. Sci., 30, 2877 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    K. S. Kumar, S. K. Mannar and R. K. Viswanadhan, Acta Metall, 40, 1201 (1992).

    CAS  Article  Google Scholar 

  13. 13.

    T. Cheng, Scripta Metall., 27, 771 (1992)

    CAS  Article  Google Scholar 

Download references


The authors would like to thanks Mr. E. Caballero, Eng. L. Baños, A. Maciel and C. Vazquez for the experimental work. This research was supported by a Conacyt grant U-31346.

Author information



Corresponding author

Correspondence to J. Colin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colin, J., Campillo, B., Gonzalez, C. et al. The Effect of Cu-Macroalloying Additions to Rapidly Solidified NiAl Intermetallic Compound. MRS Online Proceedings Library 646, 474–479 (2000).

Download citation