Processing and Properties of Gamma+Laves Phase in-situ Composite Coatings Deposited via Magnetron Sputtering

Abstract

Recent research efforts have established that Laves phase reinforced gamma titanium aluminides (i.e. γ + Laves) offer significant potential as oxidation resistant coating in high-temperature structural applications and as wear-resistant coatings for cutting tools. In this study, TiAlCr coatings were magnetron sputtered from a Ti-51Al-Cr alloy target onto various substrates. The microstructure, hardness, and stress behavior of the as-deposited and annealed coatings have been investigated.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M.P. Brady, W.J. Brindley, J.L. Smialek, and I.E. Locci, JOM 48 (11), 46 (1996).

    CAS  Article  Google Scholar 

  2. [2]

    R.L. McCarron, J.C. Schaeffer, G.H. Meier, D. Berztiss, R.A. Perkins, and J. Cullinan, in Titanium '92, edited by F.H. Froes and I. Caplan (The Minerals, Metals and Materials Society, 1993) pp. 1971.

  3. [3]

    M.P. Brady, J.L. Smialek, and F. Terepka, Scripta Metall. Mater. 32, 1659 (1995).

    CAS  Article  Google Scholar 

  4. [4]

    R.A. Perkins and G.H. Meier, in Proceedings of the Industry-University Advanced Materials Conference II, edited by F. Smith (Advanced Materials Institute, 1989) pp. 92.

  5. [5]

    Z. Tang, F. Wang, and W. Wu, Ox. Met. 48, 511 (1997).

    CAS  Article  Google Scholar 

  6. [6]

    C. Leyens, M. Schmidt, M. Peters, and W.A. Kaysser, Mater. Sci. Eng. A 239–240, 680 (1997).

    Article  Google Scholar 

  7. [7]

    C. Leyens, J.-W. van Liere, M. Peters, and W.A. Kaysser, Surf. Coatings Technol. 108/109, 30 (1998).

    Article  Google Scholar 

  8. [8]

    T.C. Huang, R. Gilles, and G. Will, Thin Solid Films 230, 99 (1993).

    CAS  Article  Google Scholar 

  9. [9]

    W.D. Nix, Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  10. [10]

    W.A. Brantley, J. Appl. Phys. 44, 534 (1973).

    CAS  Article  Google Scholar 

  11. [11]

    J.C. Helmer and C.E. Wickersham, J. Vac. Sci. Technol. A 4, 408 (1986).

    CAS  Article  Google Scholar 

  12. [12]

    H.P. Kattelus and M.A. Nicolet, in: Diffusion Phenomena in Thin Films and MicroElectronic Materials, edited by D. Gupta and P.S. Ho (Noyes Publications, Park Ridge, NJ, 1988) pp. 432.

  13. [13]

    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    CAS  Article  Google Scholar 

  14. [14]

    W.D. Nix, Mater. Sci. Eng. A 234–236, 37 (1997).

    Article  Google Scholar 

  15. [15]

    R. Venkatraman and J.C. Bravman, J. Mater. Res. 7, 2040 (1992).

    CAS  Article  Google Scholar 

  16. [16]

    C.V. Thompson, J. Mater. Res. 8, 237 (1993).

    Article  Google Scholar 

  17. [17]

    E. Artz, Acta Mater. 46, 5611 (1998).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the U.S. Army Research Office under Grant No. DAAD 19-99- 1-0152 and acknowledges the use of the facilities supported by the MRSEC Program of the NSF under Award No. DMR-9809423.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, F., Epling, W.S., Barnard, J.A. et al. Processing and Properties of Gamma+Laves Phase in-situ Composite Coatings Deposited via Magnetron Sputtering. MRS Online Proceedings Library 646, 335–340 (2000). https://doi.org/10.1557/PROC-646-N5.24.1

Download citation