Phase Stability in Processing and Microstructure Control in High Temperature Mo-Si-B Alloys

Abstract

For applications at ultrahigh temperatures the multiphase microstructural options that can be developed in the Mo-Si-B system have demonstrated an effective and attractive balance of essential characteristics. The coexistence of the high melting point (>2100°C) ternary intermetallic Mo5SiB2 (T2) phase with Mo provides a useful option for in-situ toughening. A further enhancement is available from a precipitation reaction of Mo within the T2 phase that develops due to the temperature dependence of the solubility behavior of the T2 phase. However, direct access to Mo+T2 microstructures is not possible in ingot castings due to solidification segregation reactions that yield nonequilibrium boride and silicide phases with sluggish dissolution. Alternate routes involving rapid solidification of powders are effective in suppressing the segregation induced phases. The processing and microstructure options can also be augmented by selected refractory metal substitutional alloying, such as the incorporation of Nb, that alters the solubility of the T2 phase and the relative phase stability to yield solidification of two phase refractory solid solution + T2 structures directly. The observed alloying trends highlight the role of atomic size in influencing the relative stability of the T2 phase. A key component of the overall microstructural control and long term microstructural stability is determined by the kinetics of diffusional processes. The analysis of selected diffusion couples involving binary boride and silicide phases has been used to assess the relative diffusivities in the T2 phase and coexisting phases over the range of solubility and to provide a basis for the examination of the kinetics of reactions involved in coatings and oxidation.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. A. Stoloff, in Superalloy II, edited by C. T. Sims (John Wiley, New York, 1987), p. 61.

  2. [2]

    E. R. Ross and C. T. Sims,in Superalloy II, edited by (John Wiley, New York, 1987), p. 97.

    Google Scholar 

  3. [3]

    B. F. Dyson and M. McLean, JISI Int., 30, 802 (1990).

    CAS  Google Scholar 

  4. [4]

    D. M. Diminuk, D. B. Miracle and C. H. Ward, Mater. Sci. and Tech., 8, 367 (1992).

    Article  Google Scholar 

  5. [5]

    E. P. George, M. Yamaguchi, K. S. Kumar and C. T. Liu, Annu. Rev. Mater. Sci., 24, 409 (1994).

    CAS  Article  Google Scholar 

  6. [6]

    Y. W. Kim and D. M. Diminuk, J. Metals, 43, 40 (1991).

    CAS  Google Scholar 

  7. [7]

    G. H. Meier and F. S. Pettit, Mater. Sci and Tech., 8, 331 (1992).

    CAS  Article  Google Scholar 

  8. [8]

    S. Naka, M. Thomas and T. Khan, Mater. Sci. and Tech., 8, 291 (1992).

    CAS  Article  Google Scholar 

  9. [9]

    R. Yang, N. Saulders, J. A. Leake and R. W. Cahn, Acta Metall. Mater., 40, 1553 (1992).

    CAS  Article  Google Scholar 

  10. [10]

    R. Yang, J. A. Leake, and R. W. Cahn, Mater. Sci. Engr. A, A152, 227 (1992).

    CAS  Article  Google Scholar 

  11. [11]

    R. L. Fleischer, J. Mater. Sci., 22, 2281 (1987).

    CAS  Article  Google Scholar 

  12. [12]

    N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, (E.Arnolds, London, 1983) p. 54.

    Google Scholar 

  13. [13]

    A. K. Vasudevan and J. J. Petrovic, Mater. Sci. and Eng. A, A155, 1 (1992).

    CAS  Article  Google Scholar 

  14. [14]

    D. M. Shah, D. Berczik, D. Anton and R. Hect, Mater. Sci. Eng. A, A155, 45 (1992).

    CAS  Article  Google Scholar 

  15. [15]

    D. E. Alman and N. S. Stoloff, Mat. Res. Soc. Symp. Proc., 322, 255 (1994).

  16. [16]

    W. J. Boettinger, J. H. Perepezko and P. S. Frankwicz, Mater. Sci. Eng. A, A155, 33 (1992).

    CAS  Article  Google Scholar 

  17. [17]

    J. H. Perepezko, C. A. Nunes, S. H. Yi, and D. J. Thoma, in High-Temperature Ordered Intermetallic Alloys VII, edited by C.C. Koch, C. T. Liu, N. S. Stoloff and A. Wanner,(Mater. Res. Soc. Proc. 460, Pittsburgh, PA, 1997) pp. 1–14.

    Google Scholar 

  18. [18]

    C. A. Nunes, R. Sakidja and J. H. Perepezko, in Structural Intermetallics 1997, edited by M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner and M. Yamaguchi (TMS, Warrendale, PA, 1997) p. 831.

  19. [19]

    R. Sakidja, H. Sieber, and J. H. Perepezko, in Molybdenum and Molybdenum Alloys, edited by A. Crowson, E. S. Chen, J.A Shield and P. R. Subramanian (TMS, Warrendale, PA, 1998) pp. 99–110.

  20. [20]

    R. Sakidja, H. Sieber, J. H. Perepezko, Philosophical Magazine Letters, 79 (6), 351–357 (1999).

    CAS  Article  Google Scholar 

  21. [21]

    J. H. Schneibel, C. T. Liu, D. S. Easton, and C. A. Carmichael, Mat. Sci. & Eng. A, A1–2, 78–83 (1999).

    Article  Google Scholar 

  22. [22]

    J. H. Schneibel, C. T. Liu, L. Heatherly, and M. J. Kramer, Scripta Materialia, 38 (7), 1169–76 (1998).

    CAS  Article  Google Scholar 

  23. [23]

    A. J. Thom, M. K. Meyer, M. Akinc and Y. Kim, in Processing and Fabrication of Advanced Materials for High Temperature Applications III, edited by T. S. Srivitsan and V.A. Ravi, (TMS, Warrendale, PA, 1993) pp. 413.

  24. [24]

    C. A. Nunes, R. Sakidja, Z. Dong and J. H. Perepezko, Intermetallics, 8 (4), 327–337 (2000).

    CAS  Article  Google Scholar 

  25. [25]

    R. Sakidja, G. Wilde, H. Sieber and J. H. Perepezko, in High-Temperature Ordered Intermetallic Alloys VIII, edited by E. P. George, M. Yamaguchi and M.J. Mills, (Mater. Res. Soc. Proc. 522, Pittsburgh, PA, 1999) pp. 1–6.

    Google Scholar 

  26. [26]

    S. Kim, R. Sakidja, Z. Dong, J. H. Perepezko and Y. W. Kim, this symposium.

  27. [27]

    S. Kim and J. H. Perepezko, to be published

  28. [28]

    R. W. Barnett and P. A. Larssen, Trans AIME, 230, 1528 (1964).

    Google Scholar 

  29. [29]

    P. C. Tortorici and M. A. Dayananda, Mater. Sci. & Eng. A, A261, 64–77 (1999).

    CAS  Article  Google Scholar 

  30. [30]

    E. A. Franceschi and F. Ricaldone, Revue de Chimie minerale, 21, 202–220 (1984).

    CAS  Google Scholar 

  31. [31]

    Y. B. Kuz'ma, Poroshkovaya Metallurgiya [Soviet Powder Metallurgy and Metal Ceramics, 10 (4), 298 (1971)].

    Google Scholar 

Download references

Acknowledgments

This work is sponsored by the Air Force Office of Scientific Research, USAF under grant number F49620-00-1-0077 which is most gratefully acknowledged. We thank Dr. J. Fournelle for expert guidance with EPMA measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J.H. Perepezko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perepezko, J., Sakidja, R. & Kim, S. Phase Stability in Processing and Microstructure Control in High Temperature Mo-Si-B Alloys. MRS Online Proceedings Library 646, 20–31 (2000). https://doi.org/10.1557/PROC-646-N4.5.1

Download citation