Tunable Porous Silicon Photonic Band Gap Structures

Abstract

The tuning of one-dimensional photonic band gap structures based on porous silicon will be presented. The photonic structures are prepared by applying a periodic pulse of current density to form alternating high and low porosity layers. The width and position of the photonic bandgap are determined by the dielectric function of each layer, which depends on porosity, and their thickness. In this work we show that by controlling the oxidation of the porous silicon structures, it is possible to tune the photonic bandgap towards shorter wavelengths. The formation of silicon dioxide during oxidation causes a reduction of the refractive index, which induces the blue shift. The photonic band gap is determined experimentally by taking the total reflection of the structures. In order to understand the tuning of the photonic band gap, we developed a geometrical model using the effective medium approximation to calculate the dielectric function of each of the oxidized porous silicon layers. The two key parameters are the porosity and the parameter β, defined as the ratio between the silicon dioxide thickness and the pore radius before oxidation. Choosing the parameter β, to fit the experimental photonic band gap of the oxidized structures, we extract the fraction of oxide that is present. For example, the measured 240 nm blue shift of a photonic bandgap that was centered at 1.7 microns corresponds to the transformation of 30% of the structure into silicon dioxide. A similar approach can be used for oxidized two-dimensional porous silicon photonic structures.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, and P.M. Fauchet, Nature, 384, 338 (1996).

    Article  CAS  Google Scholar 

  2. 2.

    M.G. Berger, M. Thönissen, R. Arens-Fisher, H. Münder, H. Lüth, M. Arntzen, and W. Theiss, Thin Solid Films, 255, 313 (1995).

    Article  CAS  Google Scholar 

  3. 3.

    M.G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, M. Wernke, and P. Grosse, J. Phys. D, 27, 1333 (1994).

    Article  CAS  Google Scholar 

  4. 4.

    S. Frohnhoff and M.G. Berger, Adv. Mater., 6, 963 (1994).

    Article  CAS  Google Scholar 

  5. 5.

    M. Araki, H. Koyama, and Nobuyoshi Koshida, Jpn. J. Appl. Phys., 35, 1041 (1996).

    Article  CAS  Google Scholar 

  6. 6.

    L. Pavesi, Riv. Nuovo Cimento, 20, 1 (1997).

    Article  CAS  Google Scholar 

  7. 7.

    S. Zangooie, R. Jansson, and H. Arwin, J. Vac. Sci. Technol. A, 16, 2901 (1998).

    Article  CAS  Google Scholar 

  8. 8.

    S. Chan and P.M. Fauchet, Appl. Phys. Lett., 75, 276 (1999).

    Google Scholar 

  9. 9.

    U. Grüning, V. Lehmann, and C.M. Engelhardt, Appl. Phys. Lett, 66, 3254 (1995).

    Article  Google Scholar 

  10. 10.

    U. Grüning, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett., 68, 747 (1996).

    Article  Google Scholar 

  11. 11.

    S. Rowson, A. Chelnokov, and J.-M. Lourtioz, Electronics Letters, 35, 753 (1999); Journal of Lightwave Technology, 17, 1989 (1999).

    Article  CAS  Google Scholar 

  12. 12.

    S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Bush, A. Birner, U. Gösele, and V. Lehmann, Physical Review B, 61, 2389 (2000).

    Article  Google Scholar 

  13. 13.

    A. Lopez, S. Chan, L. Tsybeskov, H. Koyama, V.P. Bondarenko, and P.M. Fauchet, Mat. Res. Soc. Symp. Proc., 356, 135 (1999).

    Google Scholar 

  14. 14.

    N. Fukaya, D. Ohsaki and T. Baba, Japanese Journal of Applied Physics part 1, 39, 2619 (2000).

    Article  CAS  Google Scholar 

  15. 15.

    H.T. Miyazaki, H. Miyazaki, K. Ohtaka and T. Sato, Journal of Applied Physics, 87, 7152 (2000).

    Article  CAS  Google Scholar 

  16. 16.

    A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader and H.M. van Driel, Nature, 405, 437 (2000).

    Article  CAS  Google Scholar 

  17. 17.

    H. Benisty, C. Weisbuch, D. Labilloy and M. Rattier, Applied Surface Science, 164, 205 (2000).

    Article  CAS  Google Scholar 

  18. 18.

    J.D. Joannopoulos, Brazilian Journal of Physics, 26, 58 (1996)

    CAS  Google Scholar 

  19. 18a.

    J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonics Crystals Molding the Flow of light, (Princeton University Press, New Jersey, 1995), p. 128.

    Google Scholar 

  20. 19.

    M. Plihal, A. Shambrook, and A.A. Maradudin, Optics Communications, 80, 199 (1991).

    Article  CAS  Google Scholar 

  21. 20.

    M. Plihal, and A.A. Maradudin, Physical Review B, 44, 8565 (1991).

    Article  CAS  Google Scholar 

  22. 21.

    A.A. Maradudin, Journal of Modern Optics, 41, 275 (1994).

    Article  CAS  Google Scholar 

  23. 22.

    J.E. Lugo, H.A. Lopez, S. Chan, and P.M. Fauchet, Porous Silicon Multilayers Structures:/A Band Gap Analysis And Applications, (To be published).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Eduardo Lugo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lugo, J.E., Lopez, H.A., Chan, S. et al. Tunable Porous Silicon Photonic Band Gap Structures. MRS Online Proceedings Library 637, E4.6 (2000). https://doi.org/10.1557/PROC-637-E4.6

Download citation