Abstract
Arrays of 10 to 120 nm diameter single crystalline bismuth nanowires havebeen formed inside amorphous alumina templates. ince bismuth has a small e ective mass compared to other materials, signi cant quantum mechanical con nement is expected to occur in wires with diameter less than 50nm. he subbands formed b yquantum con nement cause in teresting modi cations to the dielectric function of bismuth. his study measures the dielectric function of bismuth nanowires in an energy range where the e ects of quantum con nement are predicted (0.05 to 0.5e). Using F ourier transforminfrared re ectometry, the dielectric constant as a function of energy is obtained for the alumina/bismuth composite system. E ective medium theory is used to subtract the e ect of the alumina template from the measurement of the composite material, thus yielding the dielectric function of bismuth nanowires. A strong absorption peak is observed at ∼1000cm−1 in the frequency dependent dielectric function in the photon energy range measured. he dependence of the frequency and intensity of this oscillator on incident light polarization and wire diameter are reviewed. n addition, the dependence of the optical absorption on antimony and tellurium doping of the nanowires are reported.
This is a preview of subscription content, access via your institution.
References
- [1]
N. Kouklin, S. Bandyopadhyay, S. Tereshin, A. Varfolomeev, and D. Zaretsky, Applied Physics Letters 76, 460–519 (2000).
- [2]
D. E. Aspnes, A. Heller, and J. D. Porter, J. Appl. Phys. 60, 3028–3034 (1986).
- [3]
M. S. Dresselhaus, T. Koga, X. Sun, S. B. Cronin, K. L. Wang, and G. Chen. In Sixteenth International Conference on Thermoelectrics: Proceedings, ICT’97; Dresden, Germany, edited by Armin Heinrich and Joachim Schumann, pages 12–20, Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ 09955-1331, 1997. IEEE Catalog Number 97TH8291; ISSN 1094-2734.
- [4]
L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727–12731 (1993). C4.32.6
- [5]
V. Damodara Das and N. Soundararajan, Phys. Rev. B. 35, 5990–5996 (1987).
- [6]
Y. M. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 62, 4610–4623 (2000).
- [8]
M. R. Black, M. Padi, S. Cronin, Y.-M. Lin, O. Rabin, T. McClure, G. Dresselhaus, P. L. Hagelstein, and M. S. Dresselhaus, Appl. Phys. Lett. 75 (2000).
- [9]
Z. Zhang, J. Ying, and M. Dressehaus, J. Mater. Res. 13, 1745–1748 (1998).
- [10]
J. Heremans, C. M. Thrush, Y. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Mansfield, Physical Review B 61, 2921–2930 (2000).
- [11]
G. L. Hornyak, C. J. Patrissi, and C. R. Martin, J. Phys. Chem. B. 101, 1548–1555 (1997).
- [12]
C. A. Foss, Jr. G. L. Hornyak, J. A. Stockert, and C. R. Martin, J. Phys. Chem. B. 98, 2963–2971 (1994).
- [13]
D. E. Aspnes, Thin Solid Films 89, 249–262 (1982).
- [14]
N. L. Cherkas, Opt. Spectrosc. 81, 906–912 (1996).
- [15]
B. Lenoir, A. Dauscher, X. Devaux, R. Martin-Lopez, Yu.I. Ravich, H. Scherrer, and S. Scherrer. In Fifteenth International Conference on Thermoelectrics: Proceedings, ICT ’96, pages 1–13, Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ 09955-1331, 1996.
- [16]
H. J. Goldsmid, Phys. Stat. Sol. 1, 7–28 (1970).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Blacka, M.R., Lin, Y.M., Cronin, S.B. et al. Studies of the Dielectric Constant of Thin Film Bismuth Nanowire Samples Using Optical Reectometry. MRS Online Proceedings Library 635, C4.32 (2000). https://doi.org/10.1557/PROC-635-C4.32
Published: