Electrodeposition of Bi2Te3 Nanowire Composites

Abstract

Widespread applications of thermoelectric materials are limited due to low efficiency. Currently, the most widely used thermoelectric devices consist of alloys based on Bi2Te3. In such devices, the thermoelectric figure-of-merit (ZT) of bulk Bi2Te3 has been increased through doping. It is postulated that further enhancements in ZT may be attained by engineering the microstructure of the material to enhance carrier mobility while suppressing the phonon component of the thermal conductivity. This may be achieved by fabricating Bi2Te3 in the form of one-dimensional (1D) nanowires. We have deposited nanowires of Bi2Te3 with two different diameters (200 nm and 40 nm) by electrodeposition into porous anodic alumina. Characterization of the Bi2Te3/porous Al2O3 composite materials has been accomplished using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray spectroscopy (EDS) has been used to determine the stoichiometry of the wires.

This is a preview of subscription content, access via your institution.

References

  1. 1)

    Hicks, L. D.; Dresselhaus, M. S., Phys. Rev. B 1993, 47, 12727.

    CAS  Article  Google Scholar 

  2. 2)

    Hicks, L. D.; Dresselhaus, M. S., Phys. Rev. B 1993, 47, 16631.

    CAS  Article  Google Scholar 

  3. 3)

    Hicks, L. D.; Harman, T. C.; Sun, X.; Dresselhaus, M. S., Phys. Rev. B 1996, 53, 10493.

    Article  Google Scholar 

  4. 4)

    Harman, T. C.; Spears, D. L.; Walsh, M. P., J. Electron. Mater. 1999, 28, L1–L4.

    CAS  Article  Google Scholar 

  5. 5)

    Harman, T. C.; Spears, D. L.; Manfra, M. J., J. Electron. Mater. 1996, 25, 1121.

    CAS  Article  Google Scholar 

  6. 6)

    Koga, T.; Harman, T. C.; Cronin, S. B.; Dresselhaus, M. S., Phys. Rev. B 1999, 60, 14286.

    CAS  Article  Google Scholar 

  7. 7)

    Harman, T. C.; Taylor, P. J.; Spears, D. L.; Walsh, M. P., J. Electron. Mater. 2000, 29, L1.

    CAS  Article  Google Scholar 

  8. 8)

    Venkatasubramanian, R.; Colpitts, T.; Watko, E.; Hutchby, J., IEEE 15th International Conference on Thermoelectrics 1996, 454

    Google Scholar 

  9. 9)

    Cho, S.; DiVenere, A.; Wong, G. K.; Ketterson, J. B.; Meyer, J. R., Physical Review BCondensed Matter 1999, 59, 10691.

    CAS  Article  Google Scholar 

  10. 10)

    Martin, C. R., Adv. Mater. 1991, 3, 457.

    CAS  Article  Google Scholar 

  11. 11)

    Brumlik, C. J.; Martin, C. R., J.Am.Chem.Soc. 1991, 113, 3174.

    CAS  Article  Google Scholar 

  12. 12)

    Shingubara, S.; Okino, O.; Sayama, Y.; Sakaue, H.; Takahagi, T., Jpn. J. Appl. Phys. 1997, 36, 7791.

    CAS  Article  Google Scholar 

  13. 13)

    Fleurial, J.-P.; Borshchevsky, A.; Ryan, M. A.; Phillips, W., Thermoelectric Microcoolers for Thermal Management Applications; IEEE: Dresden, Germany, 1997; 16, 641.

    Google Scholar 

  14. 14)

    Sapp, S. A.; Lakshmi, B. B.; Martin, C. R., Advan. Mater. 1999, 11, 402.

    CAS  Article  Google Scholar 

  15. 15)

    Takahashi, M.; Katou, Y.; Nagata, K.; Furuta, S., Thin Solid Films 1994, 240, 70.

    CAS  Article  Google Scholar 

  16. 16)

    Zhang, Z.; Gekhtman, D.; Dresselhaus, M. S.; Ying, J. Y., Chem. Mater. 1999, 11, 1659.

    CAS  Article  Google Scholar 

  17. 17)

    Keller, F.; Hunter, M. S.; Robinson, D. L., J. Electrochem. Soc. 1953, 100, 411.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amy L. Prieto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prieto, A.L., Sander, M.S., Stacy, A.M. et al. Electrodeposition of Bi2Te3 Nanowire Composites. MRS Online Proceedings Library 626, 141 (2000). https://doi.org/10.1557/PROC-626-Z14.1

Download citation