Density-of-States Effective Mass and Scattering Parameter Measurements on Transparent Conducting Oxides Using Second-Order Transport Phenomena


Transparent conducting oxides (TCO) have relatively low mobilities, which limit their performance optically and electrically, and which limit the techniques that may be used to explore their band structure via the effective mass. We have used transport theory to directly measure the density-of-states effective mass and other fundamental electronic properties of TCO films. The Boltzmann transport equation may be solved to give analytic solutions to the resistivity, Hall, Seebeck, and Nernst coefficients. In turn, these may be solved simultaneously to give the density-of-states effective mass, the Fermi energy relative to either the conduction or valence band, and a scattering parameter, s, which characterizes the relaxation time dependence on the carrier energy and can serve as a signature of the dominate scattering mechanism. The little-known Nernst effect is essential for determining the scattering parameter and, thereby, the effective scattering mechanism(s). We constructed equipment to measure these four transport coefficients on the same sample over a temperature range of 30 – 350 K for thin films deposited on insulating substrates. We measured the resistivity, Hall, Seebeck, and Nernst coefficients for rf magnetron-sputtered aluminum-doped zinc oxide. We found that the effective mass for zinc oxide increases from a minimum value of 0.24me, up to a value of 0.47me, at a carrier density of 4.5 × 1020 cm−3, indicating a nonparabolic conduction energy band. In addition, our measured density-of-states effective values are nearly equal to conductivity effective mass values estimated from the plasma frequency, denoting a single energy minimum with a nearly spherical, constant-energy surface. The measured scattering parameter, mobility vs. temperature, along with Seebeck coefficient values, characterize ionized impurity scattering in the ZnO:AI and neutral impurity scattering in the undoped material.

This is a preview of subscription content, access via your institution.


  1. 1

    H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics Publishing, London, 1995).

    Google Scholar 

  2. 2

    T. J. Coutts, X. Wu, W. P. Mulligan and J. M. Webb, Journal of Electronic Materials 25 (6), 935–943 (1996).

    CAS  Article  Google Scholar 

  3. 3

    S. S. Li, Semiconductor Physical Electronics (Plenum, New York, 1993).

    Google Scholar 

  4. 4

    D. L. Young, T. J. Coutts, V. I. Kaydanov and W. P. Mulligan, JVST- Submitted for publication (2000).

    Google Scholar 

  5. 5

    M. K. Zhitinskaya, V. I. Kaidanov and I. A. Chemik, Sov. Phys. - Sol. Star. 8 (1), 295–297 (1966).

    CAS  Google Scholar 

  6. 6

    j. Kolodziejczak and S. Zukotynski, Phys. Star. Sol. 5 (145), 145–158 (1964).

    Article  Google Scholar 

  7. 7

    J. Kolodziejczak and L. Sosnowski, Acta Phys. Polon. 21, 399 (1962).

    Google Scholar 

  8. 8

    V. Kaydanov. (unpublished lecture notes), Colorado School of Mines, Golden, CO (1996)

    Google Scholar 

  9. 9

    E. Putley, The Hall Effect and Related Phenomena (Butterworths, London, 1960).

    Google Scholar 

  10. 10

    B. M. Askerov, Electron Transport Phenomena in Semiconductors (World Scientific, Singapore, 1994).

    Google Scholar 

  11. 11

    W. Jiang, S. N. Mao, X. X. Xi, X. Jiang, J. L. Peng, T. Venkatesan, C. J. Lobb and R. L. Greene, Phys. Rev. Lett. 73 (9), 1291–1294 (1994).

    CAS  Article  Google Scholar 

  12. 12

    D. L. Young, T. J. Coutts and V. I. Kaydanov, Review of Scientific Instruments 71 (2), 462–466 (2000).

    CAS  Article  Google Scholar 

  13. 13

    “Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors, F-76-86”, in Annual Book of ASTM Standards (American Society of Testing and Materials, West Conshohocken, 1996).

  14. 14

    S. Brehme, F. Fenske, W. Fuhs, E. Nebauer, M. Poschenrieder, B. Selle and I. Sieber, Thin Solid Films (342), 167–173 (1999).

    CAS  Article  Google Scholar 

  15. 15

    K. H. Hellwege, “Landolt-Bérnstein Numerical Data and Functional Relationships in Science and Technology: Semiconductors,” in Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, M. Schulz, and H. Weiss (Springer-Verlag Berlin-Heidelberg, Berlin, 1982), Vol. 17.

  16. 16

    S. Bloom and I. Ortenburger, Phys. Stat. Sol. (b) 58 (561), 561–566 (1973).

    CAS  Article  Google Scholar 

  17. 17

    p. Wagner and R. Helbig, J. Phys. Chem. Solids 35, 327–335 (1972).

    Article  Google Scholar 

  18. 18

    W. F. Leonard and J. T. L. Martin, Electronic Structure and Transport Properties of Crystals,First ed. (Robert E. Krieger Publishing Company, Malabar, FL, 1987).

    Google Scholar 

  19. 19

    T. Pisarkiewicz, K. Zakrzewska and E. Leja, Thin Solid Films 174, 217–223 (1989).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. L. Young.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Young, D.L., Coutts, T.J., Li, X. et al. Density-of-States Effective Mass and Scattering Parameter Measurements on Transparent Conducting Oxides Using Second-Order Transport Phenomena. MRS Online Proceedings Library 623, 259 (2000).

Download citation