Field-Emitter-Array Cold Cathode Arc-Protection Methods - A Theoretical Study

Abstract

Field-emitter arrays (FEAs) are desirable for use as electron emitters in microwave-tube amplifiers because they can provide such advantages as higher efficiency and faster turn-on compared to their thermionic counterparts. Calculations have shown that Spindt-type metal and semiconductor emitters operate well below intrinsic current limits due to thermal effects, even for high-current applications such as klystrodes, twystrodes, and traveling-wave amplifiers. Nevertheless, the primary barrier to FEA utilization in such applications is premature failure due to arcing. These failures appear to be produced by ionization of gas molecules and/or desorbed contaminants, which are exacerbated by a poor vacuum environment. Lifetime and stability issues have been largely resolved for less stringent applications, such as flat-panel displays, through the use of integrated passive resistors that provide current limiting. However, such an approach is not directly compatible with operation at high frequency and current density. Other more complex approaches, such as the incorporation of active control in the form of integrated transistors, have also been demonstrated, but again, only for FEAs used in displays. This paper will review some of these schemes in the context of their efficacy in improving lifetime and stability of FEA cold cathodes in high-frequency applications. A theoretical analysis will be given of the effect on highfrequency performance of incorporating arc protection structures into Spindt-type metal FEAs. Specifically, two approaches will be considered: passive protection schemes such as the use of a modified thin film resistive layer, and active schemes such as FETs and saturated current limiters.

This is a preview of subscription content, access via your institution.

Reference

  1. 1.

    See papers in Flat-Panel Display Materials 1998. Symposium. Mat. Res. Soc. 1998.

  2. 2.

    C. Marrese, A. D. Gallimore, J. E. Polk, K. D. Goodfellow, K. L. Jensen, AIAA 98-3484.

  3. 3.

    A. D. Feinerman et al., Proc. SPIE vol.2194, 262–73 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    H. H. Busta, J. E. Pogemiller, B. J. Zimmerman, J. Micromech. Microeng. 3(2), 49–56 (1993).

    Article  Google Scholar 

  5. 5.

    C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, J. Appl. Phys. 47(12), 5248 (1976).

    CAS  Article  Google Scholar 

  6. 6.

    S. G. Bandy et al., presented at IEEE Int. Conf. on Plasma Science, San Diego CA, (1997).

    Google Scholar 

  7. 7.

    R. A. Murphy et al., presented at IEEE Int. Conf. on Plasma Science, San Diego CA (1997).

    Google Scholar 

  8. 8.

    D. Temple et al., J. Vac. Sci. Tech. B 16(3), 1980–1990 (1998).

    CAS  Article  Google Scholar 

  9. 9.

    P. Kropfeld et al., Proc. IVMC’98, 88–89 (1998).

    Google Scholar 

  10. 10.

    F. Charbonnier, J. Vac. Sci. Tech. B 16(2), 880–887 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    M. Ancona, J. Vac. Sci. Tech. B 13(6), 2206–2214 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    M. Ancona, J. Vac. Sci. Tech. B 14(3), 1918–1923 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    V. T. Binh, N. Garcia, S. T. Purcell, Adv. in Imaging and Electron Physics 95, 63–153 (1996).

    Article  Google Scholar 

  14. 14.

    S. T. Purcell, V. T. Binh, J. Vac. Sci. Tech. B 15(5), 1666–1677 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    I. Brodie, Int. J. Electronics 38(4), 541–550, 1975.

    CAS  Article  Google Scholar 

  16. 16.

    P. R. Schwoebel, C. A. Spindt, J. Vac. Sci. Tech. B 12(4), 2414–21 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    W. A. Mackie, T. a. b. o. Xie, P. R. Davis, J. Vac. Sci. Tech. B 17(2), 613–619 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    T. Kozawa, T. Ohwaki, Y. Taga, N. Sawaki, Appl. Phys. Lett. 75(21), 3330–2 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    T. Sugino, S. Kawasaki, K. Tanioka, J. Shirafuji, J. Vac. Sci. Tech. B 16(3), 1211–14 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    C. Py, R. Baptist, IVMC’93, 23–24 (1993).

    Google Scholar 

  21. 21.

    L. Parameswaran et al., J. Vac. Sci. Tech. B 17(2) (1999).

    Google Scholar 

  22. 22.

    H. F. Gray, J. L. Shaw, Proc. IVMC’97, Kyongju Korea, 220–225 (1997).

    Google Scholar 

  23. 23.

    H. Gray, U.S Patent 5359256 (1994).

    Google Scholar 

  24. 24.

    A. Ting et al., Proc. IVMC’91, 200–201 (1991).

    Google Scholar 

  25. 25.

    J. Itoh, T. Hirano, S. Kanemaru, Appl. Phys. Lett. 69, 1578–1579 (1996).

    Google Scholar 

  26. 26.

    S. Kanemaru, T. Hirano, K. Honda, J. Itoh, Appl. Surf. Sci. 146, 198–202 (1999).

    CAS  Article  Google Scholar 

  27. 27.

    K. Yokoo, M. Arai, M. Mori, B. Jongsuck, S. Ono, J. Vac. Sci. Tech. B 13(2), 491–3 (1995).

    CAS  Article  Google Scholar 

  28. 28.

    K. Koga, S. Kanemaru, T. Matsukawa, J. Itoh, J. Vac. Sci. Tech. B 17(2), 588–591 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    D. D. Rathman et al., Proc. IEEE MTT-S Digest, 577–580 (1999).

    Google Scholar 

  30. 30.

    J. O. Choi et al., Appl. Phys. Lett. 74(20), 3050–2 (1999).

    CAS  Article  Google Scholar 

  31. 31.

    P. Perugupalli et al., IEEE Trans. Electr. Dev. 45(7), 1468 (1998).

    Article  Google Scholar 

  32. 32.

    S. Matsumoto et al., IEEE Trans. Electr. Dev. 43(5), 746 (1996).

    CAS  Article  Google Scholar 

  33. 33.

    H. Neubrand et al., Proc. 6th Int. Symp. Power Semic. Dev., 123 (1994).

    Google Scholar 

  34. 34.

    H. Takemura et al., Proc. IEDM’97, 709–12 (1997).

    Google Scholar 

  35. 35.

    H. Makishima et al., Appl. Surf. Sci. 146(1-4), 230–3 (1999).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Parameswaran.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parameswaran, L., Murphy, R.A. Field-Emitter-Array Cold Cathode Arc-Protection Methods - A Theoretical Study. MRS Online Proceedings Library 621, 461 (2000). https://doi.org/10.1557/PROC-621-R4.6.1

Download citation