Skip to main content
Log in

Estimating Model Parameter Values for Total System Performance Assessment

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The intrinsic dissolution rates of nine borosilicate waste glasses were extracted from the results of MCC- I tests conducted for durations long enough that the solution pH reached a nearly constant value but short enough that the buildup of dissolved species did not affect the dissolution rate. The effects of the pH and temperature on the measured rates were deconvoluted to determine the sensitivity of the rate to the glass composition. The intrinsic dissolution rates were similar for all of these glasses and were not correlated with the glass composition. The mean and standard deviation of the intrinsic dissolution rates of these glasses are log {ko/[g/(m2•d)]} = 8.2 ± 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Total System Performance Assessment - Viability Assessment (TSPA-VA) Analyses Technical Basis Document: Waste Form Degradation,” Chapter 6, Radionuclide Mobilization Preliminary, and Transport Through the Engineered Barrier System. Civilian Radioactive Waste Management System report B00000000-01717-4301-00004 REV 01, Las Vegas, Nevada, 1998.

  2. K. G. Knauss, W. L. Bourcier, K. D. McKeegan, C. I. Merzbacher, S. N. Nguyen, F. J. Ryerson, D. K. Smith, and H. C. Weed, in Scientific Basis for Nuclear Waste Management XIV, edited by V.M. Oversby and P.W. Brown Mater. Res. Soc. Proc., 176, Pittsburgh, PA, 1990) pp. 371–381.

    Google Scholar 

  3. T. Advocat, J. L. Crovisier, E. Vernaz, G. Ehret, and H. Charpentier, in Scientific Basis for Nuclear Waste Management XIV, edited by T. Abrajano Jr., and L.H. Johnson Mater. Res. Soc. Proc., 212, Pittsburgh, PA, 1991) pp. 57–64.

    Google Scholar 

  4. B. P. McGrail, W. L. Ebert, A. J. Bakel, and D. K. Peeler, J. Nucl. Mat., 249, 175 (1997).

    Google Scholar 

  5. P. K. Abraitis, D. J. Vaughan, F. R. Livens, L. Monteith, D. P. Trivedi, J. S. Small, in Scientific Basis for Nuclear Waste Management XXI, edited by I. G. McKinley and C. McCombie Mater. Res. Soc. Proc., 509, Pittsburgh, PA, 1998) pp. 47–54.

    Google Scholar 

  6. M.K. Andrews and N.E. Bibler, Ceram. Trans., Vol. 39, 205 (1993).

    Google Scholar 

  7. C. L. Crawford, D. M. Ferrara, B. C. Ha, and N. E. Bibler, in Proceedings of Spectrum /98, International Conference on Decommissioning and Decontamination and on Nuclear and Hazardous Waste Management, Denver, CO, September 13-18, La Grange Park, IL, 1998, pp. 581–588.

    Google Scholar 

  8. Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste, Standard C1220-98, American Society for Testing and Materials, West Conshohocken, PA. (1998).

  9. C. Q. Buckwalter, L. R. Pederson, and G. L. McVay, J. Non-Cryst. Solids, 49, 397–412 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Ebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, W.L., Zyryanov, V.N. & Cunnane, J.C. Estimating Model Parameter Values for Total System Performance Assessment. MRS Online Proceedings Library 608, 751 (1999). https://doi.org/10.1557/PROC-608-751

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-608-751

Navigation