Liquidus Temperature of High-Level Waste Borosilicate Glasses With Spinel Primary Phase

Abstract

Liquidus temperatures (TL) were measured for high-level waste (HLW) borosilicate glasses covering a Savannah River composition region. The primary crystallization phase for most glasses was spinel, a solid solution of trevorite (NiFe2O4) with other oxides (FeO, MnO, and Cr2O3). The TL values ranged from 859 to 1310°C. Component additions increased the TL (per mass%) as Cr2O3 261°C, NiO 85°C, TiO2 42°C, MgO 33°C, A12O3 18°C, and Fe2O3 18°C and decreased the TL (per mass%) as Na2O −29°C, Li2O −28°C, K2O −20°C, and B2O3 −8°C. Other oxides (CaO, MnO, SiO2, and U3O8) had little effect. The effect of RuO2 is not clear.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Hrma, G. F. Piepel, M. J. Schweiger, D. E. Smith, D.-S. Kim, P. E. Redgate, J. D. Vienna, C. A. LoPresti, D. B. Simpson, D. K. Peeler, and M. H. Langowski. 1994. Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150°C, PNL-10359, Pacific Northwest Laboratory, Richland, Washington

    Google Scholar 

  2. 2.

    P. Hrma, G. F. Piepel, P. E. Redgate, D. E. Smith, M. J. Schweiger, J. D. Vienna, and D.-S. Kim. 1995. Ceram. Trans. 61, 505–513.

    CAS  Google Scholar 

  3. 3.

    M. Mika, M. J. Schweiger, and P. Hrma. 1997. “Liquidus Temperature of Spinel Precipitating High-Level Waste Glass,” Scientific Basis for Nuclear Waste Management (Editors W. J. Gray and I. R. Triay), Vol. 465, p. 71–78, Material Research Society, Pittsburgh, Pennsylvania.

    CAS  Google Scholar 

  4. 4.

    K.-S. Kim and P. Hrma. 1994. Ceram. Trans. 45, 327–337.

    CAS  Google Scholar 

  5. 5.

    J. G. Reynolds and P. Hrma. 1997. Scientific Basis for Nuclear Waste Management (Editors W. J. Gray and I. R. Triay), Vol. 465, p. 65–70, Material Research Society, Pittsburgh, Pennsylvania.

    CAS  Google Scholar 

  6. 6.

    J. D. Vienna, P. Hrma, D. S. Kim, M. J. Schweiger, and D. E. Smith. 1996. Ceram. Trans. 72, 427–436.

    CAS  Google Scholar 

  7. 7.

    P. Hrma and P. A. Smith. 1994. “The Effect of Vitrification Technology on Waste Loading,” Proc. Int. Top. Meeting Nucl. Hazard Waste Manag. Spectrum ’94, Vol. 2, pp. 862–867.

    Google Scholar 

  8. 8.

    P. Hrma. 1994. Ceram. Trans. 45, 391–401.

    CAS  Google Scholar 

  9. 9.

    P. Hrma, J. D. Vienna, and M. J. Schweiger. 1996. Ceram. Trans. 72, 449–456.

    CAS  Google Scholar 

  10. 10.

    P. Hrma and R. J. Robertus. 1993. Ceram. Eng. Sci. Proc. 14 [11-12] 187–203.

    CAS  Article  Google Scholar 

  11. 11.

    G. F. Piepel, C. M. Anderson, and P. E. Redgate. 1993. 1993 Proceedings of the Section on Physical and Engineering Sciences, 205–227, American Statistical Association, Alexandria, Virginia.

    Google Scholar 

  12. 12.

    P. Hrma. 1998. Ceram. Trans. 87, 245–252.

    CAS  Google Scholar 

  13. 13.

    P. Hrma, J. D. Vienna, M. Mika, J. V. Crum, and G. F. Piepel: Liquidus Temperature Data for DWPF Glass, PNNL- 1170, Pacific Northwest National Laboratory. Richland, Washington, 1999.

    Google Scholar 

  14. 14.

    H. D. Schreiber, F. A. Settle, P. L. Jamison, J. P. Eckenrode, and G. W. Headley. 1986. J. Less-Common Metals, 115, 145–154.

    CAS  Article  Google Scholar 

  15. 15.

    D-S. Kim, P. Hrma, D. E. Smith, and M. J. Schweiger. 1994. Ceram. Trans. 39, 179–189.

    CAS  Google Scholar 

  16. 16.

    C. J. Capobianco and M. J. Drake. 1990. Geochem. Cosmochim. Acta 54, 869–874.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavel Hrma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hrma, P., Vienna, J., Crum, J. et al. Liquidus Temperature of High-Level Waste Borosilicate Glasses With Spinel Primary Phase. MRS Online Proceedings Library 608, 671 (1999). https://doi.org/10.1557/PROC-608-671

Download citation