Temperature Dependence of Ion Irradiation Induced Amorphisation of Zirconolite


The critical dose for amorphisation, Dc, of two end-member zirconolites (CaZrTi2O7) with different stacking fault densities, was measured as a function of irradiation temperature from 20 K to 623 K using the HVEM-Tandem Facility at Argonne National Laboratory (ANL). Below 473 K, the Dc, values of both samples are identical within experimental error, showing only a small increase in Dc, from (2.5 to 4.6) × 1018 ions m−2 between 20 K and 473 K. At temperatures above 473 K, the data for the zirconolite containing many stacking faults is bracketed by two data sets from almost crystallographically perfect end-member zirconolites: one collected in this study and one collected in a previous study. The raw Dc versus temperature data from the zirconolites in this and a previous study suggest that the critical temperature above which samples cannot be amorphised and/or recrystallisation is complete, Tc, is between 600 and 1000 K. The data sets collected in this study are discussed in relation to a current model.

This is a preview of subscription content, access via your institution.


  1. [1]

    R.C. Ewing, W.J. Weber and F.W. Clinard Jr, Progress in Nuclear Energy, 29 [2], 63–127 (1995).

    CAS  Article  Google Scholar 

  2. [2]

    G.R. Lumpkin, K.L. Smith, M.G. Blackford R. Giere and C.T. Williams, Mat. Res. Soc. Symp. Proc., 506, 215–222 (1998).

    CAS  Article  Google Scholar 

  3. [3]

    A. Jostsons, E.R. Vance and B. Ebbingaus (1999) Immobilisation of surplus plutonium in titanate ceramics, presented at Global’99 “Nuclear Technology - Bridging the Millenia”, Jackson Hole, Wyoming, USA, Aug. 29 - Sept. 3 1999.

    Google Scholar 

  4. [4]

    E.R. Vance, C.J. Ball, M.G. Blackford, D.J. Cassidy and K.L. Smith, J. Nucl. Mater., 175, p. 58–66 (1990).

    CAS  Article  Google Scholar 

  5. [5]

    P.K. Gupta, J. Am. Ceram. Soc., 76(5), 1088–1095 (1993).

    CAS  Article  Google Scholar 

  6. [6]

    L.W. Hobbs, A.N. Seeram, C.E. Jesurum and B.A. Berger, Nucl. Instruments and Meths. in Phys Res., B116, 18–25 (1996).

    Article  Google Scholar 

  7. [7]

    S.X. Wang, L.M. Wang and R.C. Ewing, Nuc. Instruments and Meths. in Phys. Res., B127/128, 186–190 (1997).

    Article  Google Scholar 

  8. [8]

    W.J. Weber, R.C. Ewing and L.M. Wang, J. Mater. Res., 9(3), 688–698 (1994).

    CAS  Article  Google Scholar 

  9. [9]

    A.E. Ringwood, S.E. Kesson, K.D. Reeve, D.M. Levins and E.J. Ramm (1988) Synroc, in Radioactive Waste Forms for the Future, edited by W. Lutze and R.C. Ewing, Elsevier, p. 233–334.

  10. [10]

    K.L. Smith, G.R. Lumpkin and N.J. Zaluzec, J. Nucl. Materials, 250, 36–52 1997).

    CAS  Article  Google Scholar 

  11. [11]

    S.X. Wang, G.R. Lumpkin, L.M. Wang and R.C. Ewing, in Radiation Effects in Insulators, REI-10, July 18-23, 1999, Jena, Germany (1999).

    Google Scholar 

  12. [12]

    T. J. White, H. Mitamura, K. Hojou and S. Furuno, Mat. Res. Soc. Symp. Proc. Vol. 333, 227–232 (1994).

    CAS  Article  Google Scholar 

  13. [13]

    F.W. Clinard Jr, Am. Ceram. Soc. Bull., 65, 1181–87 (1986).

    CAS  Google Scholar 

  14. [14]

    A. Meldrum, S.J. Zinkle, L.A. Boatner and R.C. Ewing, Phys Rev. B, 59(6) 3981–3992 (1999)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to K. L. Smith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, K.L., Blackford, M.G., Lumpkin, G.R. et al. Temperature Dependence of Ion Irradiation Induced Amorphisation of Zirconolite. MRS Online Proceedings Library 608, 487 (1999). https://doi.org/10.1557/PROC-608-487

Download citation