Microstructure and Composition of Synroc Samples Crystallized From a CaCeTi2O7 Chemical System: HRTEM/EELS Investigation

Abstract

Ce-pyrochlore, CaCeTi2O7 is a chemical analogue for CaPuTi2O7, which is a proposed ceramic endmember waste form for the disposition of excess weapon-usable plutonium in geological repositories. Ce-pyrochlore was synthesized by firing and annealing in air a mixture of CeO2, TiO2, and CaCO3 with a stoichiometry of CaCeTi2O7. The annealed products contain Cepyrochlore, Ce-bearing perovskite, CeO2, and minor CaO. The mixture annealed at a temperature of 1140 °C contains more pyrochlore phase than that annealed at a higher temperature (1300 °C), indicating that a low temperature condition favors the formation of the Ce-pyrochlore. The Ca/Ce ratio of the pyrochlore is slightly lower than the ideal ratio (one). Electron energy-loss spectroscopy results show that there is a small fraction of Ce3+ present in the pyrochlore. Ce present in perovskite is dominated by Ce3. High-resolution TEM images show that the boundary between pyrochlore and perovskite is semi-coherent. No glassy phases were observed at the grain boundary between pyrochlore and perovskite, nor between CeO2and pyrochlore. It is postulated, based on the presence of trivalent Ce in the Ce-pyrochlore, that neutron poisons such as trivalent cation Gd would be incorporated into the CaPuTi2O7 phase

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Dosch, R. G., Headley, T. J., Northrup, C. J., and Hlava, P. F., Sandia National Laboratories Report, Sandia 82-2980, 84pp (1982).

    Google Scholar 

  2. [2]

    Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., and Ramm, E. J., Synroc. In W. Lutze and R. C., Ewing, eds., “Radioactive Waste Forms for the Future.” North-Holland, Amsterdam, p. 233 (1988).

  3. [3]

    Jostsons, A., Vance, E. R., Mercer, D. J., Oversby, V. M., In T. Murakami and R. C. Ewing eds. “Scientific Basis for Nuclear Waste Management XVIII.” MRS, Pittsburgh, p. 775 (1995).

  4. [4]

    Ewing, R.C., Weber, W. J., and Lutze, W., In E. R., Merz and C. E., Walter, eds., “Disposal of Excess Weapons Plutonium as Waste.” NATO ASI Series, Kluwer Academic Publishers, Dordrecht, p. 65 (1996).

  5. [5]

    Weber, W. J., Ewing, R. C., and Lutze, W., In W. M., Murphy, and D. A., Knecht, eds., “Scientific Basis for Nuclear Waste Management XIX.” Materials Research Society, Pittsburgh, p. 25(1996).

  6. [6]

    Bakel, A. J., Buck, E. C., and Ebbinghaus, B., In “Plutonium Future - The Science.” Los Alamos National Laboratories, p. 135 (1997).

    Google Scholar 

  7. [7]

    Begg, B. D., and Vance, E. R., In Gray W. J., and Triay I. R., eds. “Scientific Basis for Nuclear Waste Management XX.” MRS, Pittsburgh, p. 333 (1997).

    Google Scholar 

  8. [8]

    Begg, B. D., Vance, E. R., Day, R. A., Hambley, M., and Conradson S. D., In W. J. Gray and I. R. Triay eds. “Scientific Basis for Nuclear Waste Management XX.” MRS, Pittsburgh, p. 325 (1997).

  9. [9]

    Buck, E. C., Ebbinghaus, B., Bakel, A. J., and Bates, J. K. Characterization of a plutonium-bearing zirconolite-rich Synroc. In W. J. Gray and I. R. Triay eds. “Scientific Basis for Nuclear Waste Management XX.” MRS, Pittsburgh, p. 1259 (1997).

    Google Scholar 

  10. [10]

    Vance, E. R., MRS Bulletin, vol. XIX, 28 (1994).

    Article  Google Scholar 

  11. [11]

    Vance, E. R., Jostsons, A., Stewart, M. W. A., Day, R. A., Begg, B. D., Hambley, M. J., Hart, K. P., and Ebbinghaus, B. B., In “Plutonium Future - The Science.” Los Alamos National Laboratories, p. 19 (1997).

    Google Scholar 

  12. [12]

    Vance, E. R., Hart, K. P., Day, R. A., Carter, M. L., Hambley, M., Blackford, M. G., and Begg, B. D., In Gray W. J., and Triay I. R., eds., “Scientific Basis for Nuclear Waste Management XX.” MRS, Pittsburgh, p. 341 (1997).

    Google Scholar 

  13. [13]

    Putnam, R. L., Navrotsky, A., Woodfield, B. F., Boerio-Goates, J., and Shapiro, J. L., J. Chem. Thermochem., 31, 229–243 (1999).

    CAS  Article  Google Scholar 

  14. [14]

    Woodfield, B. F., Boerio-Goates, J., Shapiro, J. L., Putnam, R. L., and Navrotsky, A., J. Chem. Thermochem., 31, 245 (1999).

    CAS  Article  Google Scholar 

  15. [15]

    Putnam, R. L., Navrotsky, A., Woodfield, B. F., Shapiro, J. L., Steven R., and Boerio-Goates, J., Scientific Basis for Nuclear Waste Management XXII.MRS, Pittsburgh. p. 11(1999).

    Google Scholar 

  16. [16]

    Xu, H., and Wang, Y., Scientific Basis for Nuclear Waste Management XXII.MRS, Pittsburgh. p. 47 (1999).

    Google Scholar 

  17. [17]

    Xu, H., and Wang, Y., Journal of Nuclear Materials, 275, 216 (1999).

    CAS  Article  Google Scholar 

  18. [18]

    Wang, Y., and Xu, H., Scientific Basis for Nuclear Waste Management XXIII. MRS (Same as this volume, (2000), Pittsburgh.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huifang Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, H., Wang, Y., Putnam, R.L. et al. Microstructure and Composition of Synroc Samples Crystallized From a CaCeTi2O7 Chemical System: HRTEM/EELS Investigation. MRS Online Proceedings Library 608, 461 (1999). https://doi.org/10.1557/PROC-608-461

Download citation