A Correlation Between Relative Cation Radius and the Phase Stability of Zirconolite

Abstract

The maximum solubilities of several different cations in zirconolite (CaZrTi2O7) were investigated using X-ray diffraction and electron probe microanalysis. A parameter termed the relative radius ratio, defined as the ratio of the average radius of all atoms substituting for Ca and Zr to the average radius of all atoms substituting for Ti, was calculated for each chemical system, using coordination-dependent ionic radii obtained from the literature. It was found that with the possible exception of systems containing A13+, regardless of the chemical system studied, and for additional chemical systems described in the literature, the relative radius ratio for zirconolite is 1.59, with a less than one percent standard deviation, at its solubility limit. Similar strong correlations were found between relative radius ratio and phase stability for crystallographically related rhombohedral and pyrochlore structures that also appear in these systems. These results suggest that the phase stability of zirconolite is generally governed by geometry and that chemical effects are of secondary importance

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. R. Vance, MRS Bull. 19, 28 (1994).

    CAS  Article  Google Scholar 

  2. 2.

    S. E. Kesson, W. J. Sinclair and A. E. Ringwood, Nucl. Chem. Waste Man. 4, 259 (1983).

    CAS  Article  Google Scholar 

  3. 3.

    H. J. Rossell, J. Solid State Chem. 99, 38 (1992).

    CAS  Article  Google Scholar 

  4. 4.

    F. W. Clinard Jr, D. L. Rohr and R. B. Roof, Nucl. Instrum. Methods B1, 581 (1984).

    Article  Google Scholar 

  5. 5.

    E. R. Vance, P. J. Angel, B. D. Begg and R. A. Day, Mater. Res. Soc. Symp. Proc. 333, 293 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    E. R. Vance, B. D. Begg, R. A. Day, and C. J. Ball, Mater. Res. Soc. Symp. Proc. 353, 67 (1995)

    Google Scholar 

  7. 7.

    E. R. Vance, A. Jostsons, R. A. Day, C. J. Ball, B. D. Begg and P. J. Angel, Mater. Res. Soc. Symp. Proc. 412, 41 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    D. Swenson, T. G. Nieh and J. H. Fournelle, Mater. Res. Soc. Symp. Proc. 412, 337 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    R. S. Roth, J. Nat. Bur. Stand. 56, 17 (1956).

    CAS  Article  Google Scholar 

  10. 10.

    R. A. McCauley and F. A. Hummel, J. Solid State Chem. 33, 99 (1980).

    CAS  Article  Google Scholar 

  11. 11.

    F. Mazzi and R. Munno, Amer. Mineral. 68, 262 (1983).

    CAS  Google Scholar 

  12. 12.

    M. A. Subramanian, G. Aravamudan and G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).

    CAS  Article  Google Scholar 

  13. 13.

    R. D. Shannon, Acta Cryst. A32, 751 (1976).

    CAS  Article  Google Scholar 

  14. 14.

    E. R. Vance and D. K. Agarwal, Nucl. Chem. Waste Man. 3, 229 (1982).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Swenson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swenson, D., Triyacharoen, P. A Correlation Between Relative Cation Radius and the Phase Stability of Zirconolite. MRS Online Proceedings Library 608, 413 (1999). https://doi.org/10.1557/PROC-608-413

Download citation