Composition, Geochemical Alteration, and Alpha-Decay Damage Effects of Natural Brannerite


To investigate the long-term alteration behavior of brannerite, we have undertaken a study of twelve natural samples from a range of geological environments. Our results indicate that seven of the samples exhibit only minor alteration, usually within veinlets or around the rim of the sample. The remaining five samples consist of variable amounts of unaltered and altered brannerite. SEMEDX analyses of unaltered areas indicate that the chemical formulae may deviate from the ideal stoichiometry. The U content ranges from 0.45 to 0.88 atoms per formula unit (pfu). Maximum amounts of the other major cations on the U-site are 0.48 Ca, 0.22 Th, 0.14 Y, and 0.07 Ln (lanthanide = Ce, Nd, Gd, Sm) atoms pfu. The Ti content ranges from 1.86 to 2.10 atoms pfu. Maximum values of other cations on the Ti-site are 0.15 Fe, 0.14 Si, 0.09 Al, 0.06 Nb, 0.04 Mn, and 0.04 Ni atoms pfu. Altered regions of brannerite contain significant amounts of Si and other elements incorporated from the fluid phase, and up to 40-90% of the original amount of U has been lost as a result of alteration. SEM-EDX results also provide evidence for TiO2 phases, galena, and a thorite-like phase as alteration products. Electron diffraction patterns of all samples typically consist of two broad, diffuse rings that have equivalent d-spacings of 0.31 nm and 0.19 nmi, indicating complete amorphization of the brannerite. Many of the grains also exhibit weak diffraction spots due to fine-grained inclusions of a uranium oxide phase and galena. Using the available age data, these samples have average accumulated alpha-decay doses of 2-170 × 1016 alphas/mg. Our results indicate that brannerite is subject to amorphization and may lose U under certain P-T-X conditions, but the overall durability of the titanate matrix remains high.

This is a preview of subscription content, access via your institution.


  1. 1.

    B.B. Ebbinghaus, R. Van Konynenburg, F.J. Ryerson, E.R. Vance, M.W.A. Stewart, A. Jostsons, J.S. Allender, T. Rankin, and J. Congdon, presented at Waste Management ’98, Tucson, AZ, 1998 (unpublished).

    Google Scholar 

  2. 2.

    E.R. Vance, J.N. Watson, M.L. Carter, R.A. Day, G.R. Lumpkin, K.P. Hart, Y. Zhang, P.J. McGlinn, M.W.A. Stewart, and D.J. Cassidy, presented at the American Ceramic Society Annual Meeting, Indianapolis, IN, 1999 (unpublished).

    Google Scholar 

  3. 3.

    Y. Zhang, G.R. Lumpkin, K. Hart, R. Day, S. Leung, Z. Aly, and M. Carter, presented at the

  4. 4.

    G.R. Lumpkin, K.L. Smith, M.G. Blackford, R. Gieré, and C.T. Williams, Micron 25, 581 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    S. Graeser and R. Guggenheim, Schweiz. Mineral. Petrogr. Mitt. 70, 325 (1990).

    CAS  Google Scholar 

  6. 6.

    K.R. Ludwig and J.A. Cooper, Contrib. Mineral. Petrol. 86, 298 (1984).

    CAS  Article  Google Scholar 

  7. 7.

    T.J. Headley, R.C. Ewing, and R.F. Haaker, Nature 293, 449 (1981).

    CAS  Article  Google Scholar 

  8. 8.

    R.C. Ewing and T.J. Headley, J. Nucl. Mater. 119, 102 (1983).

    CAS  Article  Google Scholar 

  9. 9.

    G.R. Lumpkin and R.C. Ewing, Phys. Chem. Minerals 16, 2 (1988).

    CAS  Article  Google Scholar 

  10. 10.

    G.R. Lumpkin, J. Nucl. Mater. 190, 302 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    G.R. Lumpkin, K.P. Hart, P.J. McGlinn, T.E. Payne, R. Gieré, and C.T. Williams, Radiochim. Acta 66/67, 469 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    G.R. Lumpkin, K.L. Smith, M.G. Blackford, R. Gieré, and C.T. Williams, in Scientific Basis for Nuclear Waste Management XXI, edited by I.G. McKinley and C. McCombie Mater. Res. Soc. Proc. 506, Pittsburgh, PA, 1998) pp. 215–222.

  13. 13.

    A. Pabst, Amer. Mineral. 39, 109 (1954).

    CAS  Google Scholar 

  14. 14.

    F. Bianconi and A. Simonetti, Schweiz. Mineral. Petrogr. Mitt. 47, 887 (1967).

    CAS  Google Scholar 

  15. 15.

    R.O. Ifill, W.C. Cooper, and A.H. Clark, CIM Bulletin 89, 93 (1996).

    Google Scholar 

  16. 16.

    J.T. Szymanski and J.D. Scott, Can. Mineral. 20, 271 (1982).

    CAS  Google Scholar 

  17. 17.

    A.N. Mariano, in Geochemistry and Mineralogy of Rare Earth Elements, edited by B.R. Lipin and G.A. McKay Mineralogical Society of America, Washington, D.C., 1989) pp. 309–348.

  18. 18.

    J.F. Banfield and D.R. Veblen, Amer. Mineral. 77, 545 (1992).

    CAS  Google Scholar 

  19. 19.

    R.H. Mitchell and A.R. Chakhmouradian, Can. Mineral. 36, 939 (1998).

    CAS  Google Scholar 

  20. 20.

    G.R. Lumpkin and R.C. Ewing, Amer. Mineral. 80, 732 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    G.R. Lumpkin and R.C. Ewing, Amer. Mineral. 81, 1237 (1996).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gregory R. Lumpkin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lumpkin, G.R., Leung, S.H.F. & Colella, M. Composition, Geochemical Alteration, and Alpha-Decay Damage Effects of Natural Brannerite. MRS Online Proceedings Library 608, 359 (1999).

Download citation