Zirconolites from Sri Lanka, South Africa and Brazil

Abstract

Zirconolites, CaZrTi2O7, from Sri Lanka and Pala Bora, South Africa, and a calzirtite, CaZr3TiO9, from Jacupiranga, Brazil, were examined using the electron microprobe, x-ray diffraction (annealing study), transmission electron microscopy, scanning electron microscopy and optical microscopy. The x-ray data indicate that all three zirconolites are metamict. Both Sri Lanka zirconolites are amorphous to the limits of resolution of the electron microscope (∼10 A). The Pala Bora zirconolite is largely amorphous but contains isolated domains (50–200 A) of crystalline material which may be the result of post-metamict recrystallization and alteration. The only other significant evidence for chemical alteration was the lower Th concentration (1–2 weight percent) and slightly lower analytic totals for the rims of the Sri Lanka zirconolites. Upon annealing at 1130°C for 5 hours, all three zirconolites recrystallized as microcrystalline aggregates. Refined unit cell parameters and volumes are consistent with published data for synthetic zirconolites. Both Sri Lanka zirconolites contain microvoids, spherical in shape, and 200 Angstroms to 2 microns in size. This porosity may be the result of helium accumulation arising from the decay of U and Th. The calzirtite was highly crystalline, exhibited no porosity, and was unchanged by the annealing treatment.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. E. Ringwood, S. E. Kesson, N. G. Ware, W. Hibberson and A. Major, Nature 278, 219 (1979).

    CAS  Article  Google Scholar 

  2. 2.

    H. J. Rossell, Nature 283, 282 (1980).

    CAS  Article  Google Scholar 

  3. 3.

    R. G. Dosch, A. W. Lynch, T. J. Headley and P. F. Hlava in: Scientific Basis for Nuclear Waste Management, vol. 3, J. G. Moore ed. (Plenum Press, New York 1981) pp. 123–130.

    Google Scholar 

  4. 4.

    F. W. Clinard, Jr., C. C. Land, D. E. Peterson, D. L. Rohr and R. B. Roof, in: Scientific Basis for Nuclear Waste Management, Vol. 4, S. Topp ed. (Elsevier, North Holland, New York in press).

  5. 5.

    K. D. Reeve and J. L. Woolfrey, J. Australian Ceramic Society 16, 10 (1980).

    CAS  Google Scholar 

  6. 6.

    V. M. Oversby and A. E. Ringwood, Radioactive Waste Management 1 (3), 289 (1981).

    CAS  Google Scholar 

  7. 7.

    A. E. Ringwood, V. M. Oversby, S. E. Kesson, W. Sinclair, N. Ware, W. Hibberson, A. Major, Nuclear and Chemical Waste Management (in press).

  8. 8.

    F. D. Busche, M. Prinz, K. Keil, G. Kurat, Earth and Planetary Science Letters 14, 313 (1972).

    CAS  Article  Google Scholar 

  9. 9.

    A. E. Bence and A. L. Albee, J. of Geology 76, 382 (1968).

    CAS  Article  Google Scholar 

  10. 10.

    R. C. Ewing, Geochimica et Cosmochimica Acta 39, 521 (1975).

    CAS  Article  Google Scholar 

  11. 11.

    H. T. Evans, Jr., D. E. Appleman and D. J. Hardwerker, Ann. Mtg. Amer. Cryst. Assoc., Cambridge, Mass., 42 (1963).

  12. 12.

    T. J. Headley, R. C. Ewing and R. F. Haaker, Nature (in press).

  13. 13.

    M. J. Drake and D. F. Weill, Chemical Geology 10, 1979 (1972).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodney C. Ewing.

Additional information

This work was supported by the U.S. Department of Energy under contract No. DE-AC-04-76-D P00789. A U.S. DOE facility.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ewing, R.C., Haaker, R.F., Headley, T.J. et al. Zirconolites from Sri Lanka, South Africa and Brazil. MRS Online Proceedings Library 6, 249–256 (1981). https://doi.org/10.1557/PROC-6-249

Download citation