Leaching Studies of Crystalline Sodium Phases in Nuclear Waste Forms

Conclusions

Promising materials for Na fixation appear to be Na0.5La0.5TiO3 (see also [9]), NaZr2(PO4)3 and NaTi2(PO4)3. The latter materials would also probably incorporate 137Cs since isomorphous Cs compounds are reported [15].

Further leaching data were obtained on nepheline and sodalite and the gross dissolution behavior of a variety of Na-bearing phases was established.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.E. Ringwood, S.E. Kesson and N.G. Ware, Immobilization of U.S. Defense Nuclear Waste Using the SYNROC Process, in Scientific Basis for Nuclear Waste Management, C.J. Northrup, ed., Vol. 2, Plenum, p. 265 (1980).

  2. 2.

    R. Roy, E.R. Vance, G.J. McCarthy and W.B. White, Matrix-Encapsulated Waste Forms: Application to Idealized Systems, Commercial and SRP/INEL Wastes, Hydrated Radiophases and Encapsulant Phases, in Scientific Basis for Nuclear Waste Management, J.G. Moore, ed., Vol. 3, Plenum, p. 155 (1981).

  3. 3.

    P.E.D. Morgan, D.R. Clarke, C.M. Jantzen and A.B. Harker, High-Alumina Ceramic for Nuclear Waste, J. Amer. Ceram. Soc. 64, 249 (1981).

    CAS  Article  Google Scholar 

  4. 4.

    G.J. McCarthy, R.G. Johnston and D.E. Pfoertsch, Thermal Stability of Supercalcine: II. The Scheelite, Sodalite and Pollucite Solid Solution Phases, Bull. Amer. Ceram. Soc. 57, 358 (1978).

    Google Scholar 

  5. 5.

    A.E. Ringwood, S.E. Kesson, N.G. Ware, W. Hibberson and A. Major, The SYNROC Process: A Geochemical Approach to Nuclear Waste Immobilization, Geochem. Journ. 13, 141 (1979).

    CAS  Article  Google Scholar 

  6. 6.

    R.G. Dosch, Ceramic Forms for Nuclear Waste, in Radioactive Waste in Geologic Storage, S. Fried, ed., ACS Symposium Series 100, American Chemical Society, Washington, DC, p. 129 (1978).

    Google Scholar 

  7. 7.

    S. Forberg, T. Westermark, H. Larker and B. Widell, Synthetic Rutile Encapsulation: A Radioactive Waste Solidification System Resulting in an Extremely Stable Product, in Scientific Basis for Nuclear Waste Management, G.J. McCarthy, ed., Vol. 1, Plenum, p. 201 (1979).

  8. 8.

    A.A. Sitnin and T.N. Leonova, Loparite, A New Accessory Mineral in Albitized and Greissenized Granites, Doklady, Akad. Nauk, S.S.S.R. 140, 1407 (1961).

    CAS  Google Scholar 

  9. 9.

    H. Newkirk, F. Ryerson, D. Coles, C. Hoenig, R. Rosza, C. Rossington, F. Bazan and J. Tewhey, Phase Equilibria, Leaching Characteristics and Ceramic Processing of Synroc D Formulations for U.S. Defense Wastes, in Scientific Basis for Nuclear Waste Management, J.G. Moore, ed., Vol. 3 Plenum, p. 165 (1981).

  10. 10.

    J.A. Stone, S.T. Goforth, Jr. and P.K. Smith, Preliminary Evaluation of Alternative Forms for Immobilization of Savannah River Plant High-Level Waste, DP-1545, E.I. DuPont de Nemours and Co., Savannah River Laboratory, Aiken, SC (1979).

    Google Scholar 

  11. 11.

    H.W. Nesbitt, G.M. Bancroft, S.N. Karkhanis and W.S. Fyfe, The Stability of Perovskite and Sphene in the Presence of Backfill and Repository Materials: A General Approach, in Scientific Basis for Nuclear Waste Management, J.G. Moore, ed., Vol. 3, Plenum, p. 131 (1981).

  12. 12.

    J. Staeitole and G. Bayer, Titanite, A Possible Host Mineral for Fixation of High-Level Radioactive Wastes, Naturwissenschaften 68, 141 (1981).

    Article  Google Scholar 

  13. 13.

    G.J. McCarthy, W.B. White and D.E. Pfoertsch, Synthesis of Nuclear Waste Monazites, Ideal Actinide Hosts for Geologic Disposal, Mater. Res. Bull. 13, 1239 (1978).

    CAS  Article  Google Scholar 

  14. 14.

    L.A. Boatner, G.W. Beall, M.M. Abraham, C.B. Finch, P.G. Huray and M. Rappaz, Monazite and Other Lanthanide Orthophosphates as Alternate Actinide Waste Forms, in Scientific Basis for Nuclear Waste Management, C.J. Northrup, ed., Vol. 2, Plenum, p. 289 (1980).

  15. 15.

    B. Matkovic, B. Prodic and M. Sljukic, Preparation and Structural Studies of Phosphates with Common Formula MIM2IV(PO4)3 (MI = Li,Na,K,Rb,Cs; MIV = Th,U,Zr,Hf), Bull. Soc. Chim. France 1777 (1968).

  16. 16.

    R.C. Weast, ed., CRC Handbook of Chemistry and Physics, 59th Ed., CRC Press, Inc. (1978–9).

  17. 17.

    E.R. Vance, D.K. Agrawal and J.G. Pepin, Powder X-ray Diffraction Study of Halide Sodalites, Phys. Stat. Sol. (a) 63, K189 (1981).

    CAS  Article  Google Scholar 

  18. 18.

    E.R. Vance, D.K. Agrawal, B.E. Scheetz, J.G. Pepin, S.D. Atkinson and W.B. White, Ceramic Phases for Immobilization of 129I, DOE Research and Development Report DOE/ET/41900-9 (1981).

  19. 19.

    H. Y-P. Hong, Crystal Structures and Crystal Chemistry in the System Na1+xZr2SixP3−x012, Mater. Res. Bull. 11, 173 (1976).

    CAS  Article  Google Scholar 

  20. 20.

    P.M. Tole, work in progress.

  21. 21.

    D.E. Grandstaff, The Dissolution Rate of Porsteritic Olivine from Hawaiian Beach Sand, in Third International Symposium on Waste-Rock Interaction Proc. Intern. Assoc. Geochem. Cosmochem., p. 72 (1980).

  22. 22.

    T. Adl et al., work in progress.

  23. 23.

    E.R. Vance, B.E. Scheetz, M.W. Barnes and B.J. Bodnar, Studies of Pollucite, submitted to this conference.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. R. Vance.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vance, E.R., Adl, T. Leaching Studies of Crystalline Sodium Phases in Nuclear Waste Forms. MRS Online Proceedings Library 6, 163–171 (1981). https://doi.org/10.1557/PROC-6-163

Download citation