GaN Decomposition in Ammonia

Abstract

GaN decomposition is studied as a function of pressure and temperature in mixed NH3 and H2 flows more characteristic of the MOVPE growth environment. As NH3 is substituted for the 6 SLM H2 flow, the GaN decomposition rate at 1000 °C is reduced from 1×1016 cm-2s-1 (i.e. 9 monolayers/s) in pure H2 to a minimum of 1×1014 cm-2s-1 at an NH3 density of 1×1019 cm-3. Further increases of the NH3 density above 1×1019 cm-3 result in an increase in the GaN decomposition rate. The measured activation energy, EA, for GaN decomposition in mixed H2 and NH3 flows is less than the EA measured in vacuum and in N2 environments. As the growth pressure is increased under the same H2 and NH3 flow conditions, the decomposition rate increases and the growth rate decreases with the addition of trimethylgallium to the flow. The decomposition in mixed NH3 and H2 and in pure H2 flows behave similarly, suggesting that surface H plays a similar role in the decomposition and growth of GaN in NH3.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys., 34, L1332 (1995).

    CAS  Article  Google Scholar 

  2. [2]

    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matushita, and T. Mukai, MRS Internet J. Nitride Semicond. Res. 4S1, G1.1 (1999).

    Google Scholar 

  3. [3]

    S.N. Mohammad, A.A. Salvador, and H. Morkoc, Proc. IEEE 83, 1306 (1995).

    CAS  Article  Google Scholar 

  4. [4]

    S. S. Liu and D. A. Stevenson, J. Electrochem. Soc. 125, 1161 (1978).

    CAS  Article  Google Scholar 

  5. [5]

    For H-NH2 the bond strength is 4.8 eV. CRC Handbook of Chemistry and Physics, 66th edition, edited by R.C. Weast, (CRC Press, Cleveland, 1986).

  6. [6]

    R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, Phys. Status Solidi A 26, 353 (1974).

    CAS  Article  Google Scholar 

  7. [7]

    N. Grandjean, J. Massies, F. Semond, S. Yu. Karpov, and R.A. Talalaev, Appl. Phys. Lett. 74, 1854 (1999).

    CAS  Article  Google Scholar 

  8. [8]

    D.D. Koleske, A.E. Wickenden, R.L. Henry, M.E. Twigg, J.C. Culbertson, and R.J. Gorman, Appl. Phys. Lett. 73, 2018 (1998), erratum: Appl. Phys. Lett. 75, 2018 (1999).

    CAS  Article  Google Scholar 

  9. [9]

    D.D. Koleske, A.E. Wickenden, R.L. Henry, M.E. Twigg, J.C. Culbertson, and R.J. Gorman, MRS Internet J. Nitride Semicond. Res. 4S1, G3.70 (1999); http://nsr.mij.mrs.org/4S1/G3.70/

    Google Scholar 

  10. [10]

    For a discussion of the surface kinetics of GaN growth, see D.D. Koleske, A.E. Wickenden, R.L. Henry, W.J. DeSisto, and R.J. Gorman, J. Appl. Phys. 84, 1998 (1998).

    CAS  Article  Google Scholar 

  11. [11]

    A. Rebey, T. Boufaden, B. El Jani, J. Cryst. Growth 203, 12 (1999).

    CAS  Article  Google Scholar 

  12. [12]

    O. Briot, S. Clur, and R.L. Aulombard, Appl. Phys. Lett. 71, 1990 (1997).

    CAS  Article  Google Scholar 

  13. [13]

    A.E. Wickenden, D.D. Koleske, R.L. Henry, R.J. Gorman, J.C. Culbertson, and M.E. Twigg, J. A. Freitas Jr., Electron. Mat. 28, 301 (1999).

    CAS  Article  Google Scholar 

  14. [14]

    C.D. Thurmond, R.A. Logan, J. Electrochem. Soc. 119, 622 (1972)

    CAS  Article  Google Scholar 

  15. [14]a.

    R. A. Logan and C.D. Thurmond, J. Electrochem. Soc. 119, 1727 (1972).

    CAS  Article  Google Scholar 

  16. [15]

    M.E. Bartram and J. R. Creighton, MRS Internet J. Nitride Semicond. Res. 4S1, G3.68 (1999).

    Google Scholar 

  17. [16]

    C.S. Kim, V.M. Bermudez, and J.N. Russell Jr., Surf. Sci. 389, 162 (1997).

    CAS  Article  Google Scholar 

  18. [17]

    O. Ambacher, M.S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R.A. Fischer, A. Miehr, A. Bergmaier, and G. Dollinger, J. Vac. Sci. Technol B 14, 3532 (1996).

    CAS  Article  Google Scholar 

  19. [18]

    M. Hashimoto, H. Amano, N. Sawaki, and I. Akasaki, J. Cryst. Growth 68, 163 (1984).

    CAS  Article  Google Scholar 

  20. [19]

    M.A. Khan, R.A. Skogman, R.G. Schulze, and M. Gershenzon, Appl. Phys. Lett. 43, 493 (1983).

    Article  Google Scholar 

  21. [20]

    O. Briot, S. Clur, and R.L. Aulombard, Appl. Phys. Lett. 71, 1990 (1997).

    CAS  Article  Google Scholar 

  22. [21]

    T. J. Kistenmacher, D.K. Wickenden, M.E. Hawley, and R.P. Leavitt, Mat. Res. Soc. Symp. Proc. 395, 261 (1996).

    CAS  Article  Google Scholar 

  23. [22]

    K. Tadatomo, Y. Ohuchi, H. Okagawa, H. Itoh, H. Miyake, and K. Hiramatsu, MRS Internet J. Nitride Semicond. Res. 4S1, G3.1 (1999); http://nsr.mij.mrs.org/4S1/G3.1/

    Google Scholar 

  24. [23]

    O. Schön B. Schineller, M. Heuken, and R. Beccard, J. Cryst. Growth 189/190, 335 (1998).

    Article  Google Scholar 

  25. [24]

    L.D. Bell, R.P. Smith, B.T. McDermott, E.R. Gertner, R. Pittman, R.L. Pierson, and G.J. Sullivan, J. Vac. Sci. Technol. B 16, 2286 (1998).

    CAS  Article  Google Scholar 

  26. [25]

    T.-B. Ng, J. Han, R.M. Biefeld, and M.V. Weckwerth, J. Electronic Mat. 27, 190 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. D. Koleske.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koleske, D.D., Wickenden, A.E. & Henry, R.L. GaN Decomposition in Ammonia. MRS Online Proceedings Library 595, 364 (1999). https://doi.org/10.1557/PROC-595-F99W3.64

Download citation