Dislocation Mechanisms in the GaN Lateral Overgrowth by Hydride Vapor Phase Epitaxy


We have carried out a series of lateral epitaxial overgrowths (LEO) of GaN through thin oxide windows by the hydride vapor phase epitaxy (HVPE) technique at different growth temperatures. High lateral growth rate at 1100°C allows coalescing of neighboring islands into a continuous and flat film, while the lower lateral growth rate at 1050°C produces triangular-shaped ridges over the growth windows. In either case, threading dislocations bend into laterally grown regions to relax the shear stress developed in the film during growth. In regions close to the mask edge, where the shear stress is highest, dislocations interact and multiply into arrays of edge dislocations lying parallel to the growth window. This multiplication and pileup of dislocations cause a large-angle tilting of the laterally grown regions. The tilt angle is high (∼8 degrees) when the growth is at 1050°C and becomes smaller (3-5 degrees) at 1100°C. At the coalescence of growth facets, a tilt-type grain boundary is formed. During the high-temperature lateral growth, the tensile stress in the GaN seed layer and the thermal stress from the mask layer both contribute to a high shear stress at the growth facets. Finite element stress simulations suggest that this shear stress may be sufficient to cause the observed excessive dislocation activities and tilting of LEO regions at high growth temperatures.

This is a preview of subscription content, access via your institution.


  1. 1.

    O.-H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, Appl. Phys. Lett. 71, 2638 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 73, 747 (1998).

    CAS  Article  Google Scholar 

  3. 3.

    A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 71, 2259 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 73, 481 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    R. Zhang and T. F. Kuech, Mat. Res. Soc. Symp. Proc., Vol.512, 327 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    W. Qian, M. Skowronski, M. De Graef, K. Doverspike, L. B. Rowland, and D. K. Gaskill, Appl. Phys. Lett. 66, 1252 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    F. C. Frank and W. T. Read, in Symposium on Plastic Deformation of Crystalline Solids, Carnegie Institute of Technology, 1950, p.44.

    Google Scholar 

  8. 8.

    S. Hearne, E. Chason, J. Han, J. A. Floro, J. Figiel, J. Hunter, H. Amano, and I. S. T. Tsong, Appl. Phys. Lett. 74, 356 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    M. Murakami, T. S. Kuan, and I. A. Blech, “Mechanical Properties of Thin Films on Substrates,” in Treatise on Materials Science and Technology, Vol.24, Academic Press, Inc., 1982, p.163–209.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. S. Kuan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuan, T.S., Inoki, C.K., Hsu, Y. et al. Dislocation Mechanisms in the GaN Lateral Overgrowth by Hydride Vapor Phase Epitaxy. MRS Online Proceedings Library 595, 26 (1999). https://doi.org/10.1557/PROC-595-F99W2.6

Download citation