Identification of As, Ge and Se Photoluminescence in GaN Using Radioactive Isotopes


We report on experiments which unequivocal identify the chemical nature of optical transitions related to As (2.58 eV), Ge (3.398 eV) and Se (1.49 eV) found in the photoluminescence (PL) spectra of GaN. For this purpose epitaxial GaN layers were doped by ion implantation (60 keV, 3×1012 cm-2) with the radioactive isotopes 71As and 72Se. The isotope 71As (half-life 64.28 h) decays first into 71Ge (11.43 d), which finally transmutes into stable 71Ga. The isotope 72Se decays via 72As (26 h) into stable 72Ge. These chemical transmutations were monitored with photoluminescence spectroscopy (PL). The half-lives resulting from exponential fits on our PL data are in excellent agreement with the half-lives of the isotopes. Our experiments clearly show that in each case the luminescence center involves exactly one As, Ge or Se atom. In addition to this, the results imply that no optically active GaN antisite exists.

This is a preview of subscription content, access via your institution.


  1. [1]

    S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, J. Appl. Phys. 86, 1 (1999)

    CAS  Article  Google Scholar 

  2. [2]

    O. Ambacher, J. Phys. D: Appl. Phys. 31, 2653 (1998)

    CAS  Article  Google Scholar 

  3. [3]

    C.H. Park and D.J. Chadi, Phys. Rev. B 55, 12995 (1997)

    Article  Google Scholar 

  4. [4]

    P. Boguslawski and J. Bernholc, Phys. Rev. B 56, 9496 (1997)

    Article  Google Scholar 

  5. [5]

    R.D. Metcalfe, D. Wickenden, and W.C. Clark, J. Lumin. 16, 405 (1978)

    CAS  Article  Google Scholar 

  6. [6]

    J.I. Pankove and J.A. Hutchby, J. Appl. Phys. 47, 5387 (1976)

    CAS  Article  Google Scholar 

  7. [7]

    X. Li, S. Kim, E.E. Reuter, S.G. Bishop, and J.J. Coleman, Appl. Phys. Lett. 72, 1990 (1998)

    CAS  Article  Google Scholar 

  8. [8]

    G. Yi and B.W. Wessels, Appl. Phys. Lett. 69, 3028 (1996)

    CAS  Article  Google Scholar 

  9. [9]

    H.M. Chen, Y.F. Chen, M.C. Lee, and M.S. Feng, Phys. Rev. B 56, 6942 (1997)

    Article  Google Scholar 

  10. [10]

    S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. 31, 2883 (1992)

    CAS  Article  Google Scholar 

  11. [11]

    R. Magerle, A. Burchard, M. Deicher, T. Kerle, W. Pfeiffer, and E. Recknagel, Phys. Rev. Lett. 75, 1594 (1995)

    CAS  Article  Google Scholar 

  12. [12]

    A. Stötzler, R. Weissenborn, M. Deicher, and the ISOLDE Collaboration, Physica B 273-274, 144 (1999)

    Google Scholar 

  13. [13]

    D.W. Jenkins and J.D. Dow, Phys. Rev. B 39, 3317 (1989)

    Article  Google Scholar 

  14. [14]

    T.L. Tansley and R. J. Egan, Phys. Rev. B 45, 10942 (1992)

    Article  Google Scholar 

  15. [15]

    P. Boguslawski, E.L. Briggs, and J. Bernholc, Phys. Rev. B 51, 17255 (1995)

    Article  Google Scholar 

  16. [16]

    J. Neugebauer and C.G. Van der Walle, Phys. Rev. B 50, 8067 (1994)

    Article  Google Scholar 

  17. [17]

    R. Magerle, in: Defects in Electronic Materials II, ed. J. Michel, T. Kennedy, K. Wada, and K. Thonke, Met. Res. Soc. Sympos. Proc. Vol.442, (Mater. Res. Soc., Pittsburgh, 1997), p.3.

    CAS  Google Scholar 

  18. [18]

    A.K. Viswanath, J.I. Lee, S. Yu, D. Kim, Y. Choi, and C. Hong, J. Appl. Phys. 84, 3848 (1998)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Stötzler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stötzler, A., Weissenborn, R., Deicher, M. et al. Identification of As, Ge and Se Photoluminescence in GaN Using Radioactive Isotopes. MRS Online Proceedings Library 595, 129 (1999).

Download citation