Skip to main content
Log in

A Surface Diffusion Model for Nanotube Growth

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The problem of nanotube growth macrokinetics is viewed within the framework of the continuum surface diffusion equation combined with step-flow growth kinetics. The differences in incorporation rates of adatoms approaching the growth steps from “upper” or “lower” terraces are taken into account. These differences can lead to the onset of surface island nucleation in front of a propagating step. This effect is able to cause formation of defects in the growing layer and even to inhibit stable step-flow modes of nanotube growth. The segregation effect of a second phase (BN) in front of the propagating of C layer step is considered, suggesting that it may cause increase in BN concentration and nucleation of islands leading to BN inclusions in C layers or the propagation of a BN layer over C layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. T. W. Ebbesen and P. M. Ajayan. Nature 358, 220 (1992).

    Article  CAS  Google Scholar 

  3. S. Iijima, P. M. Ajayan and T. Ichihashi, Phys. Rev. Lett. 69, 3100 (1992).

    Article  CAS  Google Scholar 

  4. S. Iijima, Materials Science and Engineering B19, 172 (1993).

    Article  CAS  Google Scholar 

  5. D. Bernaerts Amelinckx, X. B. Zhang, G. Van Tendeloo and J. Van Landuyt. Science 267, 1334(1995).

    Article  CAS  Google Scholar 

  6. P. M. Ajayan, Prog. Crystal Growth and Charact. 38, 37 (1997).

    Article  Google Scholar 

  7. Y. H. Lee, S. G. Kim and D. Tomanek, Phys. Rev. Lett. 78, 2393 (1997).

    Article  CAS  Google Scholar 

  8. J.-C. Charlier, A. De Vita, X. Blase and R. Car. Science 275, 646 (1997); X. Blase, A. De Vita, J.-C. Charlier and R. Car.Phys. Rev. Lett. 80, 1666 (1998).

    Article  CAS  Google Scholar 

  9. A. Maiti, C. J. Brabec, C. M. Roland and J. Bernholc, Phys. Rev.B 52, 14850 (1995); A. Maiti, C. J. Brabec and J. Bernholc.Phys. Rev. B 55, 6097 (1997).

    Article  CAS  Google Scholar 

  10. O. A. Louchev. Appl. Phys. Lett. 71, 3522 (1997).

    Article  CAS  Google Scholar 

  11. O. A. Louchev and Y. Sato, Appl. Phys. Lett. 74. 194 (1999)

    Article  CAS  Google Scholar 

  12. F. Okuyama and I. Ogasawara. Appl. Phys. Lett. 71, 623 (1997).

    Article  CAS  Google Scholar 

  13. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Science 278, 653 (1997).

    Article  CAS  Google Scholar 

  14. K. Suenaga, F. Willaime, A. Loiseau, C. Colliex, Appl. Phys. A 68, 301 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louchev, O.A., Sato, Y. A Surface Diffusion Model for Nanotube Growth. MRS Online Proceedings Library 593, 69–74 (1999). https://doi.org/10.1557/PROC-593-69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-593-69

Navigation