A Surface Diffusion Model for Nanotube Growth


The problem of nanotube growth macrokinetics is viewed within the framework of the continuum surface diffusion equation combined with step-flow growth kinetics. The differences in incorporation rates of adatoms approaching the growth steps from “upper” or “lower” terraces are taken into account. These differences can lead to the onset of surface island nucleation in front of a propagating step. This effect is able to cause formation of defects in the growing layer and even to inhibit stable step-flow modes of nanotube growth. The segregation effect of a second phase (BN) in front of the propagating of C layer step is considered, suggesting that it may cause increase in BN concentration and nucleation of islands leading to BN inclusions in C layers or the propagation of a BN layer over C layer.

This is a preview of subscription content, access via your institution.


  1. [1]

    S. Iijima, Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  2. [2]

    T. W. Ebbesen and P. M. Ajayan. Nature 358, 220 (1992).

    CAS  Article  Google Scholar 

  3. [3]

    S. Iijima, P. M. Ajayan and T. Ichihashi, Phys. Rev. Lett. 69, 3100 (1992).

    CAS  Article  Google Scholar 

  4. [4]

    S. Iijima, Materials Science and Engineering B19, 172 (1993).

    CAS  Article  Google Scholar 

  5. [5]

    D. Bernaerts Amelinckx, X. B. Zhang, G. Van Tendeloo and J. Van Landuyt. Science 267, 1334(1995).

    CAS  Article  Google Scholar 

  6. [6]

    P. M. Ajayan, Prog. Crystal Growth and Charact. 38, 37 (1997).

    Article  Google Scholar 

  7. [7]

    Y. H. Lee, S. G. Kim and D. Tomanek, Phys. Rev. Lett. 78, 2393 (1997).

    CAS  Article  Google Scholar 

  8. [8]

    J.-C. Charlier, A. De Vita, X. Blase and R. Car. Science 275, 646 (1997); X. Blase, A. De Vita, J.-C. Charlier and R. Car.Phys. Rev. Lett. 80, 1666 (1998).

    CAS  Article  Google Scholar 

  9. [9]

    A. Maiti, C. J. Brabec, C. M. Roland and J. Bernholc, Phys. Rev.B 52, 14850 (1995); A. Maiti, C. J. Brabec and J. Bernholc.Phys. Rev. B 55, 6097 (1997).

    CAS  Article  Google Scholar 

  10. [10]

    O. A. Louchev. Appl. Phys. Lett. 71, 3522 (1997).

    CAS  Article  Google Scholar 

  11. [11]

    O. A. Louchev and Y. Sato, Appl. Phys. Lett. 74. 194 (1999)

    CAS  Article  Google Scholar 

  12. [12]

    F. Okuyama and I. Ogasawara. Appl. Phys. Lett. 71, 623 (1997).

    CAS  Article  Google Scholar 

  13. [13]

    K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Science 278, 653 (1997).

    CAS  Article  Google Scholar 

  14. [14]

    K. Suenaga, F. Willaime, A. Loiseau, C. Colliex, Appl. Phys. A 68, 301 (1999).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Oleg A. Louchev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Louchev, O.A., Sato, Y. A Surface Diffusion Model for Nanotube Growth. MRS Online Proceedings Library 593, 69–74 (1999). https://doi.org/10.1557/PROC-593-69

Download citation