Diamond-Like Carbon Coatings for Rhenium Wire and Foils

Abstract

Diamond like carbon has been deposited as a protective layer for coronary stenting applications. Taking advantage of DLC’s resistance to chemical attack, its flexibility, and other properties. our current technical objective is to develop DLC as a coating for radioactive rhenium stents. Radioactive rhenium stents are being investigated to limit smooth muscle cell growth following coronary surgery. The DLC coating is being investigated to reduce the release of radioactive rhenium (released activity) into the blood following the stenting procedure. An inductively coupled RF plasma system was used to deposit the DLC onto rhenium substrates. Foils, wires, and coils were coated and tested for adhesion, cytotoxicity, and release of radioactive rhenium. Our initial results indicate up to a three-fold decrease in released activity relative to uncoated rhenium

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P.H. Schmidt and J.C. Angus. USA Patent #5,266,409 (1993).

    Google Scholar 

  2. 2.

    J.C. Angus, EMRS Symposium Proceedings, 17, 179 (1987).

    Google Scholar 

  3. 3.

    A.C. Evans, J. Franks, and P.J. Revell, Surface and Coatings Technology, 47, 662–667 (1991).

    CAS  Article  Google Scholar 

  4. 4.

    S. Christiansen, M. Albrecht, and H.P. Strunk, Journal of Materials Research, 11, 1934–1942 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    D.P. Dowling, P.V. Kola, K. Donnelly, T.C. Kelly, K. Brumitt, L. Lloyd, R. Eloy, M. Therin, M. Weill, Diamond and Related Materials 6, 390–393 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    D.L. Pappas and J. Hopwood, Journal of Vacuum Science and Technology A 12 (4), 1576–1582 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    J. Hopwood, Applied Physics Letters, 62, 940–942 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    J.A. McLaughlin, B. Meenan, P. Maguire, and N. Jamieson, Diamond and Related Materials, 5, 486 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    C. Hehrlein and W. Ktibler, Semin. Interventb. Cardiol. 2, 109–113 (1997).

    CAS  Google Scholar 

  10. 10.

    U.O. Hafeli, M.C. Warburton, and U. Landau, Biomaterials 19, 925–933 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    T.A. Fischell, Semin. Intervent. Cardiol., 3,5 1–56 (1998).

    Google Scholar 

  12. 12.

    A.J. Carter and T.A. Fischell, Int. J. Radiat. Oncol. Biol. Phys., 41, 127–133 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    C. Hehrlein and T.A. Fischell, Vascular Radiotherapy Monitor, 1, 66–69 (1999).

    Google Scholar 

  14. 14.

    U.O. Häifeli, J. Ciezki, E. Lee, and R. Macklis, in Rhenium and Rhenium Alloys, edited by B. Bryskin (MS (Minerals, Metals, and Materials Society) Warrandale, PA. 1997).

  15. 15.

    S. Prawer, B. Ran, R. Kalish, C. Johnston, P. Chalker, S.J. Bull, A. McCabe, and A.M. Jones, Diamond and Related Materials 5, 405–409 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wang, H. Chen, and R.W. Hoffman, Journal of Materials Research 5 (11), 2378–2386 (1990).

    CAS  Article  Google Scholar 

  17. 17.

    J.C. Angus, P. Koidl, and S. Domitz, in Plasma Deposited Thin Films, edited by J. Mort and F. Jansen (CRC Press, Inc., Boca Raton, Florida 1986) 89–127.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edward A. Evans.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evans, E.A., Hafeli, U., Wusinka, R. et al. Diamond-Like Carbon Coatings for Rhenium Wire and Foils. MRS Online Proceedings Library 593, 433–438 (1999). https://doi.org/10.1557/PROC-593-433

Download citation