Interaction of Oxygen with Nanophase Carbons Investigated by Electron Spin Resonance Spectroscopy


Interaction of oxygen with three commercial activated carbons (GX203, P1400 and MEED50 supplied by PICA USA Inc., with BET surface areas of 1000, 1150 and 2000 m2/g respectively) is investigated using 9 GHz electron spin resonance (ESR) spectroscopy. All three carbons give a single ESR line with g = 2.0028(3), but the linewidth ΔH and the spin concentration Ns, are strongly affected by exposure to oxygen. The ESR parameters (g, ΔH, Ns) are measured for different partial pressures of oxygen. For the highly evacuated samples, δH ? 1.2 Oe and Ns ? 1019/gm and these results are interpreted in terms of uncompensated surface dangling bonds. Oxygen exposure broadens the line and reduces Ns, in direct relation to the surface areas of the carbons and the effect is reversible. Possible effects of the paramagnetic oxygen on dangling bonds are discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    F. Rodriguez-Reinoso and A. Linares-Solano in Chemistry and Physics of Carbon, Vol. 21 edited by P. A. Thrower (Marcel Dekker, NY 1989) pp 1–146.

    CAS  Google Scholar 

  2. 2.

    M. Smisek and S. Cemy; Active Carbon Manufacture, Properties and Applications (Elsevier, NY 1970). 369

    Google Scholar 

  3. 3.

    M. S. Dresselhaus, A. W. P. Fung, A. M. Rao, S. L. diVittorio, K. Kuriyama, G. Dresselhaus, and M. Endo, Carbon 30, 1065 (1992).

    CAS  Article  Google Scholar 

  4. 4.

    A. Manivannan, M. Chirila, N. C. Giles and M. S. Seehra, Carbon 37, 1741 (1991).

    Article  Google Scholar 

  5. 5.

    M. M. Ibrahim and M. S. Seehra, Amer. Chem. Soc. Fuel Chem. Preprints 37, 1131 (1992).

    CAS  Google Scholar 

  6. 6.

    M. S. Seehra and B. Ghosh, J. Anal. Appl. Pyrolysis 13, 209 (1988).

    CAS  Article  Google Scholar 

  7. 7.

    I. C. Lewis and L. S. Singer in Chemistry and Physics of Carbon Vol. 17, edited by P. L. Walker Jr., and P. A. Thrower (Marcel Dekker, NY 1981) pp 1–88.

    CAS  Google Scholar 

  8. 8.

    L. Petrakis and D. W. Grandy in Free Radicals in Coals and Synthetic Fuels (Elsevier, NY, 1983).

    Google Scholar 

  9. 9.

    H. L. Retcofsky, J. M. Stark and R. A. Friedel, Anal. Chem. 40, 1699 (1968).

    CAS  Article  Google Scholar 

  10. 10.

    M. S. Seehra and M. M. Ibrahim in Catalysis Vol. 12 (The Royal Soc. of Chemistry U.K. 1996) pp 302–320.

    Article  Google Scholar 

  11. 11.

    B. G. Silbernagel, L. A. Gebhard and G. R. Cyrkacz in Magnetic Resonance: Introduction, Advanced Topics and Applications to Fossil Energy, edited by L. Petrakis and P. Fraissard (D. Reidel Publishing Co., Dordrecht, 1984) pp 645–653.

  12. 12.

    M. Che and A. J. Tench, Adv. Catal. 32, 1 (1983).

    CAS  Google Scholar 

  13. 13.

    N.-B. Wong, Y. B. Taarit and J. H. Lunsford, J. Chem. Phys. 60, 2148 (1974).

    CAS  Article  Google Scholar 

  14. 14.

    M. Boudart, A. J. Delbouille, E. G. Derouane, V. Indovina and A. B. Walters, J. Am. Chem. Soc. 94, 6622 (1972).

    CAS  Article  Google Scholar 

  15. 15.

    H. C. Foley, M. Stevens, M. Acharya and M. Kane, Mat. Res. Soc. Symp. Proc. (MRS 1997) Vol. 454, pp 3–8.

    CAS  Article  Google Scholar 

  16. 16.

    G. He, R. A. Shankar, M. Chzhan, A. Samouilov, P. Kuppusamy, and J. L. Zweier, Proc. Natl. Acad. Sci. 96, 4586 (1999).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Manivannan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manivannan, A., Punnoose, A. & Seehra, M.S. Interaction of Oxygen with Nanophase Carbons Investigated by Electron Spin Resonance Spectroscopy. MRS Online Proceedings Library 593, 365–370 (1999).

Download citation