Low Temperature Growth of Ultra-Nanocrystalline Diamond on Glass Substrates for Field Emission Applications


Recent studies of field emission from diamond have focused on the feasibility of growing diamond films on glass substrates, which are the preferred choice for cost-effective, large area flat panel displays. However, diamond growth on glass requires temperatures < 500 °C, which is much lower than the temperature needed for growing conventional microwave plasma chemical vapor deposition (CVD) diamond films. In addition, it is desirable to minimize the deposition time for cost-effective processing. We have grown ultrananocrystalline diamond (UNCD) films using a unique microwave plasma technique that involves CH4-Ar gas mixtures, as opposed to the conventional CH4-H2 plasma CVD method. The growth species in the CH4-Ar CVD method are C2 dimers, resulting in lower activation energies and consequently the ability to grow diamond at lower temperatures than conventional CVD diamond processes. For the work discussed here, the UNCD films were grown with plasma-enhanced chemical vapor deposition (PECVD) at low temperatures on glass substrates coated with Ti thin films. The turn-on field was as low as 3 V/μm for a film grown at 500 °C with a gas chemistry of l%CH4/99%Ar at 100 Torr, and 7 V/μm for a film grown at 350 °C. UV Raman spectroscopy revealed the presence of high quality diamond in the films.

This is a preview of subscription content, access via your institution.


  1. 1.

    I. Brodie and C. A. Spindt, Vacuum Microelectronics, Adv. Electron. Phys. 83, 1 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    E. I. Givargizov, V. V. Zhimov, N. N. Chubun, and A. N. Stepanova, J. Vac. Sci. Technol. B 15, 450 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    T. G. McCauley, T. D. Corrigan, A. R. Krauss, O. Auciello, D. Zhou, D. M. Gruen, D. Temple, R. P. H. Chang, S. English, and R. J. Nemanich in Covalently Bonded Disordered Thin-Fihn Materials, edited by M.P. Siegal, J.E. Jaskie, W. Milne, and D. McKenzie (Mater. Res. Soc. Proc. 498, Pittsburgh, PA 1998), p. 227.

  4. 4.

    C. Wang, A. Garcia, D. C. Ingram, M. Lake, and M. E. Kordesch, Electron. Lett. 27, 1459 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    S. Jou, H. J. Doerr, and R. F. Bunshah, Thin Solid Films 280, 256 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    D. Zhou, A. R. Krauss, T. D. Corrigan, L. C. Qin, T. G. McCauley, D. M. Gruen, R. P. H. Chang, and H. Gnaser, J. Appl. Phys. 82, 4546 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    T. G. McCauley, D. M. Gruen, and A. R. Krauss, Appl. Phys. Lett. 73, 1646 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    D. M. Gruen, S. Liu, A. R. Krauss, and X. Pan, J. Appl. Phys. 75, 1758 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    D. M. Gruen, C. D. Zuiker, A. R. Krauss, and X. Pan, J. Vac. Sci. Technol. A 13, 1628 (1995).

    CAS  Article  Google Scholar 

  10. 10.

    P. C. Redfern, D. A. Horner, L. A. Curtis, and D. M. Gruen, J. Phys. Chem. 100, 11654 (1996).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. D. Corrigan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corrigan, T.D., Krauss, A.R., Gruen, D.M. et al. Low Temperature Growth of Ultra-Nanocrystalline Diamond on Glass Substrates for Field Emission Applications. MRS Online Proceedings Library 593, 233–236 (1999). https://doi.org/10.1557/PROC-593-233

Download citation