Formation of Nanotube-Based Quantum Dots With Strain and Addimers

Abstract

We present the results of a large-scale molecular dynamics investigation of addimers on strained carbon nanotubes. We find that addimers induce a new set of transformations that lead to the formation of extended defects that are actually short segments of tubes of altered helicity. As these defects wrap themselves about the circumference of the nanotube, this suggests that the combination of addimers and strain may well lead to the formation of nanotube-based quantum dots. The formation of these quantum dots is most favorable for the (n.O) zigzag tubes. For these tubes, addimers induce plastic transformations in tubes that normally display brittle behavior.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    R.F. Service, Science 281, 940 (1998).

    CAS  Article  Google Scholar 

  2. [2]

    S. Iijima, C. Brabec, A. Maiti and J. Bernholc, J. Chem. Phys. 104, 2089 (1992).

    Article  Google Scholar 

  3. [3]

    B.I. Yakobson, C.J. Brabec, and I. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).

    CAS  Article  Google Scholar 

  4. [4]

    M.R. Falvo, G.J. Clary, R.M. Taylor II, V. Chi, F.P. Brooks Jr, S. Washburn and R. Superfine, Nature 389, 582 (1997).

    CAS  Article  Google Scholar 

  5. [5]

    E. Hernandez C. Goze, P. Bernier and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).

    CAS  Article  Google Scholar 

  6. [6]

    J. Despres, E. Daguerre and K. Lafdi, Carbon 33, 87 (1995).

    CAS  Article  Google Scholar 

  7. [7]

    N. Chopra, L. Benedict, V. Crespi, M.L. Cohen, S.G. Louie and A. Zettl, Nature 377, 135 (1995)

    CAS  Article  Google Scholar 

  8. [7a]

    R. Ruoff and D. Lorentz, Bull. Am. Phys. Soc. 40, 173 (1986).

    Google Scholar 

  9. [8]

    J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68, 631 (1992).

    CAS  Article  Google Scholar 

  10. [9]

    N. Hamada, S.I. Sawada and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).

    CAS  Article  Google Scholar 

  11. [10]

    R. Saito, M. Fujita, G. Dresselhaus and M.S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992); Phys. Rev. B 46, 1804 (1992).

    CAS  Article  Google Scholar 

  12. [11]

    X. Blase, L.X. Benedict, E.L. Shirley, and S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994).

    CAS  Article  Google Scholar 

  13. [12]

    L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie and M.L. Cohen, Phys. Rev. Lett. 76, 971 (1996)

    CAS  Article  Google Scholar 

  14. [12a]

    L. Chico, L.X. Benedict, S.G. Louie and M.L. Cohen, Phys. Rev. B 54, 2600 (1996).

    CAS  Article  Google Scholar 

  15. [13]

    V.H. Crespi, M.L. Cohen and A. Rubio, Phys. Rev. Lett. 79, 2093 (1997)

    CAS  Article  Google Scholar 

  16. [13a]

    J.C. Charlier, T.W. Ebessen and Ph. Lambin, Phys. Rev. B 53, 11108 (1996).

  17. [14]

    L. Chico, M.P. Sancho and M.C. Munoz, Phys. Rev. Lett. 81, 1278 (1998).

    CAS  Article  Google Scholar 

  18. [15]

    A.J. Stone and D.J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    CAS  Article  Google Scholar 

  19. [16]

    M. Buongiorno Nardelli, B.I. Yakobson and J. Bernholc, Phys. Rev. B 57, R4277 (1998).

    Article  Google Scholar 

  20. [17]

    B.I. Yakobson, Appl. Phys. Lett. 72, 918 (1998).

    CAS  Article  Google Scholar 

  21. [18]

    M. Buongiorno Nardelli, B.I. Yakobson and J. Bernholc, Phys. Rev. Lett. 81, 4656 (1998).

    CAS  Article  Google Scholar 

  22. [19]

    J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988); Phys. Rev. B 37, 6991 (1988)

    CAS  Article  Google Scholar 

  23. [19a]

    D. Brenner, Phys. Rev. B 42, 9458 (1990).

    CAS  Article  Google Scholar 

  24. [20]

    D. Orlikowski, M. Buongiorno Nardelli, J. Bernholc and C. Roland, Phys. Rev. Lett. 83, 4132, (1999).

    CAS  Article  Google Scholar 

  25. [21]

    D. Orlikowski, M. Buongiorno Nardelli, J. Bernholc and C. Roland, submitted to Phys. Rev. B.

  26. [22]

    V. Meunier and Ph. Lambin, Phys. Rev. Lett. 81, 5588 (1998)

    CAS  Article  Google Scholar 

  27. [22a]

    V. Meunier, P. Senet and Ph. Lambin, Phys. Rev. B 60, 7792 (1999).

    CAS  Article  Google Scholar 

  28. [23]

    C.L. Kane and E.J. Mele, Phys. Rev. B 59, R12759 (1999).

    CAS  Article  Google Scholar 

  29. [24]

    C.H. Xu, C.Z. Wang, C.T. Chan and K.M. Ho, J. Phys. Cond. Mat. 4, 6047 (1992).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Orlikowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Orlikowski, D., Nardelli, M.B., Bernholc, J. et al. Formation of Nanotube-Based Quantum Dots With Strain and Addimers. MRS Online Proceedings Library 593, 149–154 (1999). https://doi.org/10.1557/PROC-593-149

Download citation