Electronic Structures of Single-Walled Carbon Nanotubes Studied by NMR


An individual single-walled carbon nanotube (SWNT) has been shown [1-4] to exhibit remarkable electronic properties which depend on its diameter and chirality. In this work, the 13C nuclear magnetic resonance technique is used to measure quantitatively the electronic density-of-state (DOS) at the Fermi level in a bulk SWNT sample. Two types of 13C nuclear spins are observed with drastically different nuclear spin-lattice relaxation time (Tl). About onethird of the 13C nuclear spins with shorter Tl, are identified to reside at the metallic SWNTs and two-thirds can be associated with the semiconducting SWNTs. For the metallic SWNTs, the DOS at the Feimi level is measured quantitatively, which is about 0.022 states/(eV·atom·spin). The measured electronic DOS at the Fermi level agrees with the theoretical prediction for metallic tubes. This study also found that the semiconducting SWNTs in bundles, in fact, possess weak metallic characters. This indicates that tube-tube interactions within SWNT bundles could change the electronic properties.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    R. Saito, et al., Appl. Phys. Lett. 60, 2204 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    J. W. G. Wildoer, et al., Nature 391, 59 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    T. W. Odom, J-L. Huang, P. Kim, C. M. Lieber, Nature 391, 62 (1998).

    CAS  Article  Google Scholar 

  5. 5.

    P. Delaneyet et al., Nature 391, 466 (1998).

    Article  Google Scholar 

  6. 6.

    A. Thesset et al., Science 273, 483 (1996).

    Article  Google Scholar 

  7. 7.

    T. Yildirim, O. Zhou, J. E. Fischer, Fullerene Based Materials, W. Andreoni, Ed. (Kluwer Academic Publishers, in press).

  8. 8.

    E. D. Ostroff and J. S. Waugh, Phys. Rev. Lett. 16, 1097 (1966).

    CAS  Article  Google Scholar 

  9. 9.

    J. Winter, Magnetic Resonance in Metals ( Clarendon, Oxford, 1971).

    Google Scholar 

  10. 10.

    G. P. Carver, Phys. Rev. B 2, 2284 (1970).

    Article  Google Scholar 

  11. 11.

    Y. Hiroyama and K. Kume, Solid State Com. 65, 617 (1988).

    CAS  Article  Google Scholar 

  12. 12.

    R. Tycko, et al., Phys. Rev. Lett. 68, 1912 (1992).

    CAS  Article  Google Scholar 

  13. 13.

    V. P. Antropov, et al., Phys. Rev. B 47, R12373 (1993)

    Article  Google Scholar 

  14. 14.

    For this mechanism, the 13CT1 depends on the relative orientation between the external magnetic field and the local ppΦ, bonding. Then, the 13CT1 can be different at different carbon sites in the same SWNT. However, the anisotropic effect is (C. H. Penningtonet et al., Phys. Rev. B 53, R2967–2970 (1996)) too small to account for the observed large difference between T and T. Thus, the two components with different 13CT1 should reside at SWNTs with different electronic properties. This is further shown by the poor fitting of the M*(t) curve with a stretched exponential function.

    Article  Google Scholar 

  15. 15.

    J. W. Mintmire and C. T. White, Appl. Phys. A 67, 65 (1998).

    CAS  Article  Google Scholar 

  16. 16.

    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    J. W. Mintmire and C. T. White, Phys. Rev. Lett. 81, 2506 (1998).

    CAS  Article  Google Scholar 

  18. 18.

    L. C. Qinet et al., Chem. Phys. Lett. 268, 101 (1997).

    Article  Google Scholar 

  19. 19.

    J. P. Lu and J. Han, International J. High Speed Electronics and Systems 9, 101 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    J. Honeet et al., Phys. Rev. Lett. 80, 1042 (1998).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to X. P. Tang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tang, X.P., Kleinhammes, A., Shimoda, H. et al. Electronic Structures of Single-Walled Carbon Nanotubes Studied by NMR. MRS Online Proceedings Library 593, 143–148 (1999). https://doi.org/10.1557/PROC-593-143

Download citation