Mesoscopic Transport in Broken down Ultrathin SiO2 Films

Abstract

A common theoretical framework is presented to model the conduction characteristics of the two main dielectric breakdown modes in ultrathin SiO2 gate oxides, namely the soft and hard breakdown modes. The breakdown paths are considered to behave as mesoscopic quantum point contacts so that the conduction properties are controlled by energy funneling effects. An adiaba-tic approach to the modelling of these quantum point contacts is adopted to obtain an analytical approximation for the total transmission coefficient. In the limit of small breakdown spot areas, tunneling through a potential barrier associated with the lower electron transversal state at the narrowest part of the constriction explains the soft breakdown characteristics. For larger areas, such a barrier dissapears and conductance quantization is predicted. Experimental results are well explained by the model, including the conductance values after the hard breakdown and the oxide thickness independence of the current-voltage characteristic after the soft breakdown.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J.H. Stathis and D.J. DiMaria, IEDM Techn. Digest, 1998, p. 167–170.

    Google Scholar 

  2. 2.

    J. Surñé, I. Placencia, N. Barniol, E. Farrés, F. Martín and X. Aymerich, Thin Solid Films 185, 347 (1990).

    Article  Google Scholar 

  3. 3.

    R. Degraeve, G. Groseneken, R. Bellens, J.L. Ogier, M. Depas, P.J. Roussel and H.E. Maes, IEEE Trans. Electron Devices 45, 904 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    J.H. Stathis, Microelectronic Engineering 36, 325 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    S. Datta, in Electronic Transport in Mesoscopic Systems, Cambridge, University Press, 1997.

    Google Scholar 

  6. 6.

    T. Ouchterlony and K. Berggren, Phys. Rev. B 52, 16329 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    M. Büttiker, Phys. Rev. B 41, 7906 (1990).

    Article  Google Scholar 

  8. 8.

    E. Bogachek, A. Schervakov and U. Landman, Phys. Rev. B 56, 1065 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    J. Surñé, E. Miranda, M. Nafría and X. Aymerich, Proc. IEDM' 98., p. 191 (1998).

  10. 10.

    O. Halimaoui, O. Brierè and G. Ghibaudo, Microelec. Engineer. 36, 157 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    M. Houssa, T. Nigam, P. Mertens and M. Heyns, J. Appl. Phys. 84, 4351 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

F. Campabadal and L. Fonseca of the CNM-CSIC are acknowledge for sample provision. This work has been partially supported by the DGES under project number PB96-1162.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Miranda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miranda, E., Sune, J., Rodriguez, R. et al. Mesoscopic Transport in Broken down Ultrathin SiO2 Films. MRS Online Proceedings Library 592, 113–118 (1999). https://doi.org/10.1557/PROC-592-93

Download citation