New Type of Superlattice: An Epitaxial Semiconductor-Atomic Superlattice, SAS


Conventional superlattices are formed with repeating a basic period consisting of a heterojunction between two materials. A new type of superlattice are formed by replacing the heterojunction between adjacent semiconductors with semiconductor layers separated by adsorbed species such as oxygen atoms; and CO, molecules, etc. This new type of superlattice, SAS, semiconductor-atomic-superlattice, fabricated epitaxially, enriches the present class of heterojunction superlattices and quantum wells for quantum devices. The Si growth beyond the adsorbed monolayer of oxygen is epitaxial with fairly low defect density. At present, such a structure shows stable electroluminescence and insulating behavior, useful for optoelectronic and SOI (silicon-on-insulator) applications. SAS may form the basis of future all silicon ‘superchip’ with both electrons and photons.

This is a preview of subscription content, access via your institution.


  1. 1.

    L. T. Canham, Appl. Phys. Lett. 57 1046–1048 (1990).

    CAS  Article  Google Scholar 

  2. 2.

    V. Lehmann, and U. Gösele, Appl. Phys. Lett. 58 856–858 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    D. Babic, and R. Tsu, Superlattices and Microstructures 22,582–588(1997)

    Article  Google Scholar 

  4. 4.

    R. Tsu, H. Shen, and M. Dutta, Appl. Phys. Lett. 60 112–114 (1992).

    CAS  Article  Google Scholar 

  5. 5.

    S. M. Prokes, J.A. Freitas, and P. C. Searson, Appl. Phys. Lett. 60 3295–3297 (1992).

    CAS  Article  Google Scholar 

  6. 6.

    See for example: Y. Kanemitsu, Phys. Rev. B 49 16845–16848 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    L. Esaki, and R. Tsu, R., IBMJ. of Res. and Dev. 14 61–65 (1970).

    CAS  Article  Google Scholar 

  8. 8.

    J. W. Matthews, and A. E. Blakeslee, A.E., J. Cryst. Growth 32 265–273 (1976).

    CAS  Article  Google Scholar 

  9. 9.

    G. C. Osburn, J Appl. Phys. Lett. 57 1586–1589 (1982).

    Google Scholar 

  10. 10.

    R. Tsu, Nature 364 19 (1993).

    Article  Google Scholar 

  11. 11.

    R. Tsu, J. Morais, and A. Bowhill, in Porous Silicon, Eds. Z. C. Feng and R. Tsu (World Scientific 1994), P. 443–448.

  12. 12.

    R. Tsu, J. G. Hernandez, S. S. Chao, and D. Martin, Appl. Phys. Lett. 48, 647–649 (1986).

    CAS  Article  Google Scholar 

  13. 13.

    R. Tsu, J. Morais, and A. Bowhill, Mat. Res. Soc. Symp.Proc. 358, 825–832 (1995).

  14. 14.

    J. H. Stathis, and M. A. Kastner, Phys. Rev. B 35 2972 (1987).

    CAS  Article  Google Scholar 

  15. 15.

    See for example: P. M. Fauchet, in Porous Silicon, Eds. Z. C. Feng and R. Tsu (World Scientific 1994), P. 449–465.

  16. 16.

    A. Anedda, et al., J. Appl. Phys. 74 6993 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    R. A. Street, and D. K. Biegelsen, Solid Satate Comm 33 1159–1162 (1980).

    CAS  Article  Google Scholar 

  18. 18.

    R. Tsu, A. Filios, C. Lofgren, K. Dovidenko and C. G. Wang, Electrochem and Solid State Lett., 1 (2) 80 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    D. Meakin, M. Stobbs, J. Stoemenos and N.A. Economou, Appl. Phys. Lett. 52, 1053 (1988)

    CAS  Article  Google Scholar 

  20. 20.

    R. Tsu, K. Dovidenko, and C. Lofgren, ECS Proc. 99–22, 294–301 (1999)

  21. 21.

    R. Tsu, ECS Proc. 98–19, 3 (1999)

  22. 22.

    J. Ding and R. Tsu, Appl. Phys. Lett. 71, 2124 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    R. Tsu, Q. Zhang, and A. Filios, SPIE 3290, 246 (1997).

    CAS  Google Scholar 

  24. 24.

    Z.H. Lu, D.J. Lockwood and J.M. Barlbeau, Nature,378, 825(1995)

    Article  Google Scholar 

  25. 25.

    L. Tsybeskov, K.D. Hirschman, S.P. Duttagupta, P.M. Fauchet, M. Zacharias, P. Kohlert, J.P. McCaffrey and D.J. Lockwood, ECS Proc. 97–11, 134 (1997)

  26. 26.

    In ‘Atomic Spectra and Atomic Structure’, G. Herzberg, (Dover Publications, New York, 1944)

    Google Scholar 

  27. 27.

    L.J. Radziemski, and K.L. Andrew, J. Opt Soc. Am, 55,474(1965)

    Article  Google Scholar 

  28. 28.

    V. Kaufman, L.J. Radziemski, and K.L. Andrew, J. Opt Soc. Am, 56,911(1966).

    CAS  Article  Google Scholar 

  29. 29.

    R. P. Gupta, Phys. Rev.B32, 8278 (1985)

    Article  Google Scholar 

  30. 30.

    Y.P Li, and W.Y. Ching, Phys. Rev. B31, 2172 (1985).

    Article  Google Scholar 

  31. 31.

    A.M. Mazzone, Europhysics Lett. 35, 13–18 (1996)

    CAS  Article  Google Scholar 

  32. 32.

    R. Tsu, A. Filios, C. Lofgren, D. Cahill, J. Van Nostrand, and C.G. Wang, Solid-State Electronics, 40, 221–223 (1996)

    CAS  Article  Google Scholar 

  33. 33.

    G.I. Distler, B.B. Zvyagin, Nature, 212, 807 (1966).

    CAS  Article  Google Scholar 

  34. 34.

    R. Tsu, A. Filios, and Q. Zhang, ‘Perspectives of Light Emitters in Nanoscale Silicon’ Advances in Science and Technology, 27, Innovative Light Emitting Materials, editors, P. Vincenzini and G.C. Righini, (Techna Sri. 1999) p.55

    CAS  Google Scholar 

  35. 35.

    MS Thesis by J. Dinkier, Deaprtment of ECE, UNC-Charlotte, Dec. 1998.

  36. 36.

    R. Tsu, A. Filios, C. Lofgren, J. Ding, Q. Zhang, J. Morais, and C.G. Wang, ECS Proc. 97–11, 341–350 (1997)

Download references

Author information



Corresponding author

Correspondence to Raphael Tsu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsu, R. New Type of Superlattice: An Epitaxial Semiconductor-Atomic Superlattice, SAS. MRS Online Proceedings Library 592, 348–358 (1999).

Download citation