Atomic-Scale Structure of the Si-SiO2 and SiC-SiO2 Interfaces and the Origin of Their Contrasting Properties


One of the reasons for the dominance of Si in microelectronics is the quality of the Si-SiO2 interface. In contrast, development of SiC-based MOSFETs for power applications is hampered primarily by poor carrier mobility at the SiC-SiO2 interface. Here we review recent calculations that elucidate the reasons of the contrasting properties of the two interfaces. In the case of Si, the interface energy is in fact lower when the interface is abrupt and smooth because of the intrinisic geometry of the Si (001) surface and the softness of the Si-O-Si angle. However, two energei-cally degenerate phases are possible, leading to domain boundaries, that are the cause of suboxide bonds, steps, and dangling bonds. In principle, these effects may be avoidable by low-temperature deposition. In contrast, the geometry and bond lengths of SiC surfaces are not suitable for abrupt and smooth interfaces, requiring the existence of a nonstoichiometric interlayer that may be the cause of the reduced mobility.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. T. Pantelides, M. Long, The Physics of SiO2 and its Interfaces, (Pergamon, New York, 1978).

    Google Scholar 

  2. 2.

    M. DiVentra and S. T. Pantelides, Phys. Rev. Lett. 83, 1624 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    F. J. Himpsel et al., Phys. Rev. B 38, 6084 (1988): A. Pasquarello et al. Phys. Rev. Lett. 74, 1024 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    A. Ourmazd et al., Phys. Rev. Lett. 59, 213 (1987).

    CAS  Article  Google Scholar 

  5. 5.

    H. Akatsu and I. Ohdomari, Appl. Surf. Sci. 41/42, 357 (1989).

    Article  Google Scholar 

  6. 6.

    A. B. Gurevich et al. Phys. Rev. B 58, R 13434 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    P.V. Smith and A. Wander, Surf. Sci 219, 77 (1989); Y. Miyamoto and A. Oshiyama, Phys. Rev. B 41, 12680 (1990): T. Hoshino et al., Phys. Rev. B 50, 14999 (1994): N. A. Modine, G. Zumbach, and E. Kaxiras, (unpublished)

    CAS  Article  Google Scholar 

  8. 8.

    F. Herman and R.V. Kasowski, J. Vac. Sci. Tech. 19, 395 (1985).

    Article  Google Scholar 

  9. 9.

    A. Pasquarello, M. S. Hybertsen, and R. Car, Appl. Phys. Lett. 68, 625 (1996); Phys. Rev. B56, 10942 (1996); A. Pasquarello, M. S. Hybertsen, R. and Car, Nature 396, 58 (1998)

    CAS  Article  Google Scholar 

  10. 10.

    H. Kageshima and K. Shiraishi, Phys. Rev. Lett. 81, 5936 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    M. Ramamoorthy and S.T. Pantelides, Appl. Phys. Lett. 75, 115 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    R. Buczko, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett., in press.

  13. 13.

    M.C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    I. Ohdomari, T. Mihara, and K. Kai, J. Appl. Phys. 60, 3900 (1986) used Si-O-Si-Si bridges to build a model interface.

    CAS  Article  Google Scholar 

  15. 15.

    J. Bernhardt et al., Appl. Phys. Lett. 74, 1084 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    E.H. Poindexter et al., J Appl. Phys. 52, 879 (1981)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ryszard Buczko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buczko, R., Pennycook, S.J. & Pantelides, S.T. Atomic-Scale Structure of the Si-SiO2 and SiC-SiO2 Interfaces and the Origin of Their Contrasting Properties. MRS Online Proceedings Library 592, 234–239 (1999).

Download citation