Impedance Spectroscopy Investigation on the Low-Temperature Degradation of Tetragonal Zirconia: Influence of Measurement Conditions


Impedance spectroscopy has been used for the characterization the low-temperature degradation of yttria-stabilized tetragonal zirconia polycrystals in a non-destructive assay. Superficial transformations resulting from annealing in air lead to the appearance of an extra relaxation in the impedance spectra which evolves with degradation extent. It has been demonstrated that in situ electrical characterization cannot be performed because the electrode layers retard the degradation phenomenon. The ideal temperature/time condition to record spectra is also discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. E. Bauerle, J. Phys. Chem. Solids, 30 2657 (1969).

    CAS  Article  Google Scholar 

  2. 2.

    N. Bonanos, B. C. H. Steele, E. P. Butler, W. B. Johnson, W. L. Worrell, D. D. Macdonald and M. C. H. McKubre, in Impedance Spectroscopy: Emphasizing Solid Materials and Systems, edited by J. R. Macdonald (John Wiley & Sons, New York, 1987) pp. 191–316.

  3. 3.

    M. Kleitz, H. Bernard, E. Fernandez, and E. Schouler, in Advances in Ceramics, vol.3, Science and Technology of Zirconia, edited by A. H. Heuer and L. W. Hoods (The American Ceramic Society, Inc., Columbus, 1981) pp. 310–336.

  4. 4.

    M. Kleitz, L. Dessemond, M. C. Steil, Solid State Ionics 75, 107 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    M. C. Steil, F. Thevenot, M. Kleitz, J. Electrochem. Soc. 144 (1), 390 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    D. Z. Florio, R. Muccillo, Solid State Ionics 123, 301 (1999).

    Article  Google Scholar 

  7. 7.

    S. P. S. Badwal, N. Nardella, Appl. Phys. A49,13 (1989).

    CAS  Article  Google Scholar 

  8. 8.

    E. N. S. Muccillo, M. Kleitz, J. Eur. Ceram. Soc. 16, 453 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    M. Kuwabara, M. Ashizuka, Y. Kubota, T. Tsukidate, J. Mater. Sci. Lett. 5, 7 (1986).

    CAS  Article  Google Scholar 

  10. 10.

    C. Bowen, S. Ramesh, C. Gill, S. Lawson, J. Mater. Sci., 33, 5103 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    A. E. Hughes, S. P. S. Badwal, Solid State Ionics 46, 265 (1991).

    CAS  Article  Google Scholar 

  12. 12.

    M. C. Steil, F. Thevenot, L. Dessemond and M. Kleitz in: Third Euro-Ceramics, edited by P. Durán and J. F. Fernandes (Faenza Editrice Ibérica, San Vicente-Espanha, 1993), vol.2, pp. 271–280.

    Google Scholar 

  13. 13.

    M. M. R. Boutz, C. S. Chen, L. Winnubst, A. J. Burggraaf, J. Am. Ceram. Soc, 77 (10) 2632 (1994).

    CAS  Article  Google Scholar 

  14. 14.

    M. Aoki, Y.-M. Chiang, I. Kosacki, L. J.-R. Lee., H. Tuller, Y. Liu, J. Am. Ceram. Soc. 79 (5), 1169(1996).

    CAS  Article  Google Scholar 

  15. 15.

    R. C. Garvie, R. H. Hannink, R. T. Pascoe, Nature (London) 258, 703 (1975).

    CAS  Article  Google Scholar 

  16. 16.

    A. G. Evans, R. M. Cannon, ActaMetall. 34 (5), 761(1986).

    CAS  Google Scholar 

  17. 17.

    K. Keizer, M. Van Hemert, A. J. A. Winnusbst, M. A. C. G. Van de Graaf, A. J. Burggraaf, J. de Physique 47, Cl–783 (1986).

    Google Scholar 

  18. 18.

    K. Kobayashi, H. Kuwajima, T. Masaki, Solid State Ionics 3/4,489 (1981).

    Article  Google Scholar 

  19. 19.

    T. Sato, S. Ohtaki, M. Shimada, J. Mater. Sci. 20, 1466 (1985).

    CAS  Article  Google Scholar 

  20. 20.

    M. Yoshimura, Am. Ceram. Soc. Bull. 67 (12), 1950 (1988).

    CAS  Google Scholar 

  21. 21.

    S. Lawson, J. Eur. Ceram. Soc. 15, 485 (1995).

    CAS  Article  Google Scholar 

  22. 22.

    X. Guo, Solid State Ionics 112, 113 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    A. P. Santos, R. Z. Domingues, M. Kleitz, J. Eur. Ceram. Soc. 18, 1571 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    R. C. Garvie, P. S. Nicholson, J. Am. Ceram. Soc. 55, 303 (1972).

    CAS  Article  Google Scholar 

  25. 25.

    B. A. Boukamp, Solid State Ionics 20, 31 (1986).

    CAS  Article  Google Scholar 

Download references


The authors thank the staff of the LEPMI laboratory (INPG-CNRS, Grenoble-France), where the impedance measurements were conducted, and in particular, Dr. M. Kleitz for his most valuable discussions. Special thanks are extended to Dr. C. M. Steil, who provided the initial idea for his work. A. P. Santos acknowledges a scholarship from CAPES and the authors thank the support of Fapemig.

Author information



Corresponding author

Correspondence to A. P. Santos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santos, A.P., Domingues, R.Z. Impedance Spectroscopy Investigation on the Low-Temperature Degradation of Tetragonal Zirconia: Influence of Measurement Conditions. MRS Online Proceedings Library 591, 97–102 (1999).

Download citation