Skip to main content
Log in

Controlled Environment Transmission Electron Microscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The basic design features of a controlled environment transmission electron microscope and the details of the one at the University of Illinois are described. Examples of how this instrument has been used to determine fundamental mechanisms of hydrogen embrittlement in metals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Marton, Acad. r. Belg. Cl. Sci. 21, 553 (1935).

    Google Scholar 

  2. E. P. Butler and K. F. Hale, in Practical Methods in Electron Microscopy; Vol. 9, edited by A. M. Glauert (North-Holland, Amsterdam, 1981), p. 239.

    Google Scholar 

  3. P. Baules, P. Millet, M.J. Casanove, E. Snoeck, and C. Roucau, J. Microsc. Spectrosc. Electron. (France) 14. 305 (1989).

    Google Scholar 

  4. F.M. Ross and P.C. Searson, in Dynamic observation of electrochemical etching in silicon, Oxford, 1995 (Institute of Physics Conference}), p. 5

    Google Scholar 

  5. F.M. Ross and P.C. Searson, in In situ observation of an electrochemical etching reaction in silicon, Boston, 1995 (Materials Research Society, Boston), p. 69.

    Google Scholar 

  6. A. Berman, Vacuum Engineering Calculations, Formulas and Solved Exercises (Academic Press, San Diego, 1992).

    Google Scholar 

  7. Vacuum (Leybold Vacuum Products INC, Export, Pa, 1990).

  8. G.M. Bond, I.M. Robertson, and H.K. Birnbaum, Scripta Metall. 20, 653 (1986).

    Google Scholar 

  9. J.C. Lacaze, Memoire CNAM Central Regional agree de Toulouse, France, Cited in Butler and Hale (1977).

    Google Scholar 

  10. T.C. Lee, D.K. Dewald, J.A. Eades, I.M. Robertson, and H.K. Birnbaum, Review of Scientific Instruments 62, 1438 (1991).

    Google Scholar 

  11. D. Teter, P. Ferreira, I.M. Robertson, and H.K. Birnbaum, in An environmental Cell TEM for studies of gas-solid interactions, in New Techniques for Characterizing Corrosion and Stress Corrosion, Clevland, Ohio, 1995 (TMS, Warrendale, Pa), p. 53.

    Google Scholar 

  12. I.M. Robertson and D. Teter, Journal Microscopy Research and Technique 42, 260 (1998).

    Google Scholar 

  13. T. Tabata and H.K. Birnbaum, Scripta Metall. 17, 947 (1984).

    Google Scholar 

  14. H.K. Birnbaum, D.S. Shih, and I.M. Robertson, in HVEM Environmental Cell Studies of Hydrogen effects in Alpha-Titanium, Osaka, 1985, p. 53.

    Google Scholar 

  15. I.M. Robertson and H.K. Birnbaum, Acta Metall. 34, 353 (1986).

    Google Scholar 

  16. G.M. Bond, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 35, 2289 (1987).

    Google Scholar 

  17. G.M. Bond, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 36, 2193 (1988).

    Google Scholar 

  18. D.S. Shih, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 36, 111 (1988).

    Google Scholar 

  19. G.M. Bond, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 37, 1407 (1989).

    Google Scholar 

  20. P. Rozenak, I.M. Robertson, and H.K. Birnbaum, Acta Metall. Mater. 38, 2031 (1990).

    Google Scholar 

  21. H.E. Hanninen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Journal of Materials Engineering & Performance 2, 807 (1993).

    Google Scholar 

  22. P.J. Ferreira, I.M. Robertson and H.K. Birnbaum, Mater. Sci. Forum, 93 (1996).

  23. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mater. 46, 1749 (1998).

    Google Scholar 

  24. R.A. Oriani, in A review of proposed mechanisms for hydrogen-assisted cracking in metals, Philadelphia, Pa., USA. 29 May - 1 June 1973, 1973.

    Google Scholar 

  25. R.A. Oriani, Corrosion 43, 390 (1987).

    Google Scholar 

  26. C.D. Beachem, Metall. Trans. A 3, 437 (1972).

    Google Scholar 

  27. S.P. Lynch, Scr. Metall. 13, 1051 (1979).

    Google Scholar 

  28. H. Xiao, Ph.D. Thesis, University of Illinois, 1993.

  29. D. Teter, Ph.D. Thesis, University of Illinois, 1996.

  30. D. Lillig, Unpublished work, University of Illinois, 1999.

  31. I. M. Robertson, Unpublished work, University of Illinois, 1999.

  32. E. Sirois and H.K. Birnbaum, Acta Metall. 40, 1377 (1992).

    Google Scholar 

  33. P. Sofronis and H.K. Birnbaum, Fatigue and Fracture of Aerospace Structural Materials American Society of Mechanical Engineers, Aerospace Division 36, 15 (1993).

    Google Scholar 

  34. D.G. Ulmer and C.J. Altstetter, Acta Met. et Mat. 39, 1237 (1991).

    Google Scholar 

  35. D.P. Abraham and C.J. Altstetter, Metallurgical and Materials Transactions 26A, 2859 (1995).

    Google Scholar 

  36. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mat. 47, 2991 (1999).

    Google Scholar 

  37. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Materials Science Forum, 93, 2091, (1996).

    Google Scholar 

Download references

Acknowledgments

I am indebted to the following people for their assistance in designing, constructing and maintaining the JEOL 4000 environmental cell transmission electron microscope; Drs. T. C. Lee, D. K. Dewald, D. Teter and J. A. Eades, Mr. D. Lillig and Professor H. K. Birnbaum. Without their help and dedication this facility would not have been developed. The controlled environment transmission electron microscope is part of the Center for Microanalysis in the Frederick Seitz Materials Research Laboratory. This work was supported by the Department of Energy through grant DEFG02-91-ER45439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Robertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, I.M. Controlled Environment Transmission Electron Microscopy. MRS Online Proceedings Library 589, 57 (1999). https://doi.org/10.1557/PROC-589-57

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-589-57

Navigation