Theoretical Explanation of Pt Trimers Observed by Z-Contrast STEM

Abstract

First-principles quantum-mechanical calculations on γ-alumina have revealed a fascinating “reactive sponge” phenomenon. γ-alumina can store and release water, but in a unique, “reactive” way. This “reactive sponge process” facilitates the creation of aluminum and oxygen vacancies in the alumina surface. Earlier atomic-resolution Z-contrast STEM images of ultradispersed Pt atoms on a γ-alumina support showed the individual atoms to form dimers and trimers with preferred spacings and orientations that are apparently dictated by the underlying support[1]. In turn, the reactive sponge property of γ-alumina is the key to understanding the Pt clusters. Our calculations demonstrate that if three Pt atoms fill three vacancies created during the reactive sponge process, the resulting geometry precisely matches that of the Pt trimers observed in the Z-STEM images. Understanding the initial nucleation of small clusters on the complex gamma alumina surface is an essential first step in determining the origins of catalytic activity.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    P. D. Nellist and S. J. Pennycook, Science, 274, 413 (1996).

    CAS  Article  Google Scholar 

  2. [2]

    C. N. Satterfield, Heterogeneous Catalysis in Practice, §4.5 (McGraw Hill, New York, 1980).

    Google Scholar 

  3. [3]

    B. Shi and B. H. Davis, J. Catal., 157, 359 (1995).

    CAS  Article  Google Scholar 

  4. [4]

    H. Knözinger and P. Ratnasamy, Catal. Rev. - Sci. Eng., 17, 31 (1978).

    Article  Google Scholar 

  5. [5]

    B. C. Gates, Chem. Rev., 95, 511 (1995).

    CAS  Article  Google Scholar 

  6. [6]

    M. Che and C. O. Bennett, Adv. Catal., 36, 55 (1989).

    CAS  Google Scholar 

  7. [7]

    R. Shah, M. C. Payne, M.-H. Lee, and J. D. Gale, Science, 271, 1395 (1996).

    CAS  Article  Google Scholar 

  8. [8]

    Z. Xu, F.-S. Xiao, S. K. Purnell, O. Alexeev, S. Kawi, S. E. Deutsch, and B. C. Gates, Nature, 372, 346 (1994).

    CAS  Article  Google Scholar 

  9. [9]

    S. J. Pennycook, A. Howie, M. D. Shannon, and R. Whyman, J. Molec. Catal. 20, 345 (1983).

    CAS  Article  Google Scholar 

  10. [10]

    K. Sohlberg, S. J. Pennycook, and S. T. Pantelides, J. Am. Chem. Soc., 121, 7493 (1999).

    CAS  Article  Google Scholar 

  11. [11]

    W. Kohn and L. J. Sham, Phys. Rev., 140A, 1133 (1965).

    Article  Google Scholar 

  12. [12]

    J. P. Perdew, Phys. Rev. B, 33, 8822, (1986).

    CAS  Article  Google Scholar 

  13. [13]

    M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 64, 1045, (1992).

    CAS  Article  Google Scholar 

  14. [14]

    Al pseudopotential: B. Winkler, V. Milman, B. Hennion, M. C. Payne, M. H. Lee, J. S. Lin, Phys. Chem. Min., 22, 461 (1995); H pseudopotential: CASTEP default reciprocal-space; O pseudopotential: B. Winkler, V. Milman, B. Hennion, M. C. Payne, M. H. Lee, J. S. Lin, Phys. Chem. Min., 22, 461 (1995); Pt pseudopotential: Troullier, N., and Martins J. L., Phys. Rev. B, 43, 1993 (1991).

  15. [15]

    L. Kleinman and D. M. Bylander, Phys Rev. Lett., 48, 1425 (1982).

    CAS  Article  Google Scholar 

  16. [16]

    K. Sohlberg, S. J. Pennycook, and S. T. Pantelides, J. Am. Chem. Soc., 121, XXXX (1999).

    Google Scholar 

  17. [17]

    H. J. Monkhorst and J. D. Pack, Phys. Rev., B 13, 5188 (1976).

    Article  Google Scholar 

  18. [18]

    K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum (Alcoa, 1987).

    Google Scholar 

  19. [19]

    A. A. Tsyganenko and P. P. Mardilovich, J. Chem. Soc., Faraday Trans. 92, 4843–4852 (1996).

    CAS  Article  Google Scholar 

  20. [20]

    V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge 1994).

    Google Scholar 

  21. [21]

    A. J. Léonard, P. N. Semaille, and J. J. Fripiat, Proc. Br. Ceram. Soc., 103, 103 (1969).

    Google Scholar 

  22. [22]

    B. C. Lippens and J. J. Steggerda, in B. G. Linsen, (ed.) Physical and Chemical Aspects of Adsorbents and Catalysts, (Academic Press, London 1970).

  23. [23]

    S-D. Mo, Y-N. Xu, and W-Y. Ching, J. Am. Ceram. Soc., 80 1193 (1997).

    CAS  Article  Google Scholar 

  24. [24]

    M.-H. Lee, C-F. Cheng, V. Heine, and J. Klinowski, Chem. Phys. Lett., 265, 673 (1997).

    CAS  Article  Google Scholar 

  25. [25]

    D. A. Dowden, J. Chem. Soc., 1–2 242 (1950).

    Article  Google Scholar 

  26. [26]

    J. H. de Boer and G. M. M. Houben, Proceedings of the International Symposium on the Reactivity of Solids, I, 237 (1952).

  27. [27]

    S. Soled, J. Catalysis, 81, 252 (1983).

    CAS  Article  Google Scholar 

  28. [28]

    V. A. Ushakov and E. M. Moroz, React. Kinet. Catal. Lett., 24, 113 (1984).

    CAS  Article  Google Scholar 

  29. [29]

    R. M. Pearson, J. Catal., 23, 388 (1971).

    CAS  Article  Google Scholar 

  30. [30]

    J. M. Saniger, Mat. Lett., 22, 109 (1995).

    CAS  Article  Google Scholar 

  31. [31]

    A. A. Tsyganenko, K. S. Smirnov, A. M. Rzhevskij, and P. P Mardilovich. Mat. Chem. and Phys., 26, 35 (1990).

    CAS  Article  Google Scholar 

  32. [32]

    S. J. Wilson, J. Solid State Chem., 30, 247 (1979).

    CAS  Article  Google Scholar 

  33. [33]

    R-S. Zhou and R. L. Snyder, Acta. Cryst., B47, 617 (1991).

    CAS  Article  Google Scholar 

  34. [34]

    R. J. Hill, Clays Clay Min., 29, 435 (1981).

    CAS  Article  Google Scholar 

  35. [35]

    C. S. John, N. C. M. Alma, and G. R. Hays, Applied Catal., 6 341 (1983).

    CAS  Article  Google Scholar 

  36. [36]

    K. Sohlberg, S. J. Pennycook, and S. T. Pantelides, Recent Research Developments in Physical Chemistry, (submitted).

  37. [37]

    For a detailed account of how H20 breaks up on an alumina surface, see Ref.[39].

  38. [38]

    P. D. Nellist, private communication.

  39. [39]

    K. C. Hass, W. F. Schneider, A. Curioni, and W. Andreoni, Science, 282, 265 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Laboratory Directed Research and Development Program (SEED) of Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U. S. Department of Energy under Contract No. DE-AC05-960R22464, National Science Foundation grant DMR-9803768, by the William A. and Nancy F. McMinn Endowment at Vanderbilt University, and by financial support from Dupont through an ATE grant. Computations were partially supported by the National Center for Supercomputing Applications (NCSA) under grant CHE990015N to KS and utilized the SGI Origin2000 at NCSA, University of Illinois at Urbana-Champaign. KS was supported by an appointment to the ORNL Postdoctoral Research Program administered jointly by ORNL and Oak Ridge Associated Universities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karl Sohlberg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sohlberg, K., Pantelides, S.T. & Pennycook, S.J. Theoretical Explanation of Pt Trimers Observed by Z-Contrast STEM. MRS Online Proceedings Library 589, 241 (1999). https://doi.org/10.1557/PROC-589-241

Download citation