Optimisation of Adhesion at Transition Metal-Oxide Interfaces by Processing at Well-Chosen Oxygen Activity

Abstract

Transition metal-oxide interfaces suffer within their thermodynamic stability range Gibbs’ adsorption and show important changes in chemical composition with oxygen activity. As a consequence, specific free interfacial energy and adhesion energy also vary with oxygen activity. Adhesion at a given non-reactive transition metal-oxide interface can then be optimised by establishing the proper oxygen activity during processing or by a post-treatment at the interface.

In the present work, the approach of Gibbs’ adsorption is extended to crystalline, anisotropic (special) transition metal-oxide interfaces. It is demonstrated that interfacial energy varies with oxygen activity. The variation in energy is studied for different adsorption energies, temperatures and interfacial planes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Proceedings of Metal-Ceramic Interfaces 1990, Act. Scr. Metall. 4, edited by M. Rühle, A.G. Evans, M.F. Ashby and J.P. Hirth (Pergamon Press) (1990).

  2. 2.

    Proceedings of the International Symposium on Metal-Ceramic Interfaces, Acta Met. Mat. 40, edited by W. Mader and M. Rtihle (1992).

  3. 3.

    D. Imhoff, S. Laurent, C. Colliex and M. Backhaus-Ricoult, Eur. Phys. Journal AP 5, 9–18 (1999)

    CAS  Article  Google Scholar 

  4. 4.

    S. Laurent, D. Imhoff, C. Colliex, M.J. Hÿtch, J. Devaud, S. Hagège, M. Backhaus-Ricoult, Proc. iib 98: Intergranular and interphase boundaries in materials, ed. P. Lejcek, V. Paidar, Trans tech pub]., 294–296, 325–328 (1998)

    Google Scholar 

  5. 5..

    M. Backhaus-Ricoult, S. Laurent, J. Devaud, M. Hÿtch, D. Imhoff, S. Hagège, Colloque de Métallurgie, Edition Physique, ed. D. Mazière pxx (1999)

  6. 6..

    X.Y. Huang, W. Mader and R. Kirchheim; Acta metall. Mater. 39, 893–907 (1991).

    CAS  Article  Google Scholar 

  7. 7.

    J. Gegner, G. Hoerz and R. Kirchheim; Interface Science 5, 231–243 (1997)

    CAS  Article  Google Scholar 

  8. 8.

    M. Backhaus-Ricoult and S. Laurent, in Interfacial Science in Ceramic Joining, NATO ASI series 3: High technology, 58, ed. A. Bellosi, T. Kosmac, A.P. Tomsia, p. 169 (1997)

    Google Scholar 

  9. 9..

    M. Backhaus-Ricoult and S. Laurent, Proc. iib 98: Intergranular and interphase boundaries in materials, ed. P. Lejcek, V. Paidar, Trans tech publ., 294–296, p 173 (1998)

    Google Scholar 

  10. 10..

    Saiz, E., Tomsia, A.T. and Cannon, R.M. in Ceramic Microstructure: Control at an atomic levels, ed. A.P. Tomsia and A.M. Glaeser, Plenum Press, p. 65 (1996)

  11. 11..

    Chatain, D., Chabert, F., Ghetta, V. and Fouletier, J., J. Am. Ceram. Soc. 77, 197 (1994)

    CAS  Article  Google Scholar 

  12. 12..

    Chatain, D., Ghetta, V. and Fouletier, J., Interfacial Science in Ceramic Joining, NATO ASI Series 3, 58, ed. A. Bellosi, T. Kosmac and A.P. Tomsia, p.45 (1997)

    Google Scholar 

  13. 13.

    Maier, J., Prog. Solid State Chem. 23, 171 (1995)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Backhaus-Ricoult.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Backhaus-Ricoult, M. Optimisation of Adhesion at Transition Metal-Oxide Interfaces by Processing at Well-Chosen Oxygen Activity. MRS Online Proceedings Library 586, 183 (1999). https://doi.org/10.1557/PROC-586-183

Download citation