Atomic Scale Analysis of InGaN Multi-Quantum Wells


InGaN multiquantum wells grown by MOCVD on GaN have been investigated by transmission electron microscopy techniques and numerical analysis of high resolution (HREM) images. One objective of this research was to correlate the atomic structure and emission mechanisms of InGaN quantum well. The studied layers contained 13% or 20% In. It was shown that GaN/InGaN interfaces are rather rough and exhibit an oscillating contrast. Structural defects were found on these interfaces. The relative c-lattice parameter variation in the well was determined using numerical processing of HREM images. The lattice spacings appear to be larger than that expected from Vegard’s law suggesting the presence of a biaxial strain. Further observations also revealed a redistribution of In within the well. Instead of a continous In-rich layer, quantum dots were often observed along the well with a regular spacing. The formation of these In-rich dots was not intented and their presence suggests either a periodic modulation of strain along the well or In-rich cluster formation.

This is a preview of subscription content, access via your institution.


  1. [1]

    P. Perlin, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. Shapiro, J. Kruger, E. R. Weber and J. Yang, Appl. Phys. Lett. 73 (19), (1998).

    Google Scholar 

  2. [2]

    S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).

    CAS  Article  Google Scholar 

  3. [3]

    J. Krueger, C. Kisielowski, R. Klockenbrink, G. S. Sudhir, Y. Kim, M. Rubin and E. R. Weber, MRS Symp. Proc. Vol. 468, 299 (1997).

    Article  Google Scholar 

  4. [4]

    P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lambert and R. D. Dupuis, Appl. Phys. Lett. 71 (11), (1997).

    Google Scholar 

  5. [5]

    I. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69 2701, (1996).

    CAS  Article  Google Scholar 

  6. [6]

    N. A. El-Masry, E. L. Piner, S. X. Liu and S. M. Bedair, Appl. Phys. Lett. 72 (1), (1998).

    Google Scholar 

  7. [7]

    F. Ponce, D. Cherns, W. Goetz and R. S. Kern, MRS Symp. Proc. Vol. 482, 453 (1998).

    CAS  Article  Google Scholar 

  8. [8]

    P. Schwander, C. Kisielowski, F. H. Baumann, Y. Kim and A. Ourmazd, Phys. Rev. Lett. 71, (25), 4150 (1993).

    CAS  Article  Google Scholar 

  9. [9]

    C. Kisielowski, O. Schmidt and J. Wang, MRS Symp. Proc. Vol. 482, 369 (1998).

    CAS  Article  Google Scholar 

  10. [10]

    Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita and S. Nakamura, Appl. Phys. Lett. 70 (8), 981 (1998).

    Article  Google Scholar 

  11. [11]

    C. Kisielowski, J. Krfiger, S. Ruvimov, T. Suski, J. W. Ager III, E. Kones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser and R. F. Davis, Phys. Rev. B54 (24), 17745 (1996).

    Article  Google Scholar 

  12. [12]

    L. T. Romano, B. S. Krusor, M. D. Mc Cluskey, D. P. Bour and K. Nauka, Appl. Phys. Lett. 73 (13), 1757 (1998).

    CAS  Article  Google Scholar 

  13. [13]

    C. Kisielowski, Z. Liliental-Weber and S. Nakamura, Jpn. J. Appl. Phys. Vol. 36, 6932 (1997).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Benamara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benamara, M., Liliental-Weber, Z., Swider, W. et al. Atomic Scale Analysis of InGaN Multi-Quantum Wells. MRS Online Proceedings Library 572, 357 (1999).

Download citation