Characterization of Thick 4H-SiC Hot-Wall CVD Layers

Abstract

Epitaxial 4H-SiC layers suitable for high power devices have been grown in a hot-wall chemical-vapor deposition (CVD) system. These layers were subsequently characterized for many parameters important in device development and production. The uniformity of both thickness and doping will be presented.

Doping trends vs. temperature and growth rate will be shown for the p-type dopant used. Then-type dopant drops in concentration with increasing temperature or increasing growth rate. In contrast, the p-type dopant increases in concentration with decreasing temperature or increasing growth rate. A simple descriptive model for this behavior will be presented.

The outcome from capacitance-voltage and SIMS measurements demonstrate that transitions fromn to n, or p to p, and even n to p levels can be made quickly without adjustment to growth conditions. The ability to produce sharp transitions without process changes avoids degrading the resulting surface morphology or repeatability of the process. Avoiding process changes is particularly important in growth of thick layers since surface roughness tends to increase with layer thickness.

Device results from diodes producing two different blocking voltages in excess of 5 kV will also be shown. The higher voltage diodes exhibited a breakdown behavior which was near the theoretical limit for the epitaxial layer thickness and doping level grown.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Sriram, G. Augustine, A.A. Burk Jr, R.C. Glass, H.M. Hobgood, P.A. Orphanos, L.B. Rowland, R.R. Siergiej, T.J. Smith, C.D. Brandt, M.C. Driver, and R.H. Hopkins, IEEEElectron Device Lett. 17, 369, (1996).

    CAS  Article  Google Scholar 

  2. 2.

    O. Kordina, J.P. Bergman, A. Henry, E. Janzén, S. Savage, J. Andre, L.P. Ramberg, U. Lindefelt, W. Hermansson, and K. Bergman, Appl. Phys. Lett. 67, 1561, (1995).

    CAS  Article  Google Scholar 

  3. 3.

    J.N. Shenoy, J.A. Cooper Jr, and M.R. Melloch, IEEE Electron Device Lett. 18, 93 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    A.K. Agarwal, J.B. Casady, L.B. Rowland, S. Seshadri, W.F. Valek, and C.D. Brandt, Submitted to IEEE Electron Device Lett.

  5. 5.

    O. Kordina, C. Hallin, A. Henry, J. P. Bergman, I. Ivanov, A. Ellison, N. T. Son, and E. Janzen, Phys. Stat. Sol. B 202, p. 321 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    O. Kordina, A. Henry, E. Janzen, and C.H. Carter Jr, Silicon Carbide, III-Nitride and Related Materials 2, p. 107 (1997).

    Google Scholar 

  7. 7.

    T. Kimoto, A. Itoh, N. Inoue, O. Takemura, et al, Mater. Sci. Forum 264-8, 675 (1998).

    Article  Google Scholar 

  8. 8.

    D.J. Larkin, Phys. Stat. Sol. (b) 202, 305 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    A.A. Burk Jr, and L.B. Rowland, Appl. Phys. Lett. 68, 382 (1996).

    CAS  Article  Google Scholar 

  10. 10.

    B. J. Baliga, Power Semiconductor Devices (PWS Publishing, 1996).

    Google Scholar 

  11. 11.

    Paul Chow, Rensselaer Polytechnic Institute, private communication.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. J. Paisley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paisley, M.J., Irvine, K.G., Kordina, O. et al. Characterization of Thick 4H-SiC Hot-Wall CVD Layers. MRS Online Proceedings Library 572, 167 (1999). https://doi.org/10.1557/PROC-572-167

Download citation