Properties of Si/Cs/O nanocluster thin films with negative electron affinity

Abstract

Thin films of Si/Cs/O nanoclusters have been synthesized by the technique of supersaturated thermal vaporization of Si and Cs in an oxygen background gas. These films, which were deposited onto conducting or semiconducting substrates, exhibit negative electron affinity (NEA) as evidenced by ultraviolet photoemission spectroscopy (UPS). Photo and field electron emission properties of these nanocluster films were investigated with photo-electron emission microscopy (PEEM), field electron emission microscopy (FEEM), and current-voltage measurements. Flat cathodes covered with thin films of Si/Cs/O nanoclusters exhibited high current outputs and low turn-on fields. The films’ NEA is unaffected by air exposure and is stable to high temperature annealing (550 TC). A field emission display unit with a simple diode structure containing a flat cathode coated with a patterned thin film of Si/Cs/O nanoclusters has also been built to demonstrate the potential application of this material in cold cathode electron emitting devices, particularly field emission flat panel displays.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. J. Uebbing and L. W. James, J. Appl. Phys. 41, 4505 (1970).

    CAS  Article  Google Scholar 

  2. 2.

    O. M. Kuttel, O. Groning, E. Schaller, L. Dietrich, P. Groning, L. Schlapbach, Diamond and Related Materials 5, 807 (1996).

    Article  Google Scholar 

  3. 3.

    S. P. Bozeman, P. K. Baumann, B. L. Ward, M. J. Powers, J. J. Cuomo, R. J. Nemanich, D. L. Dreifus, Diamond and Related Materials 5, 802 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    M. J. Powers, M. C. Benjamin, L. M. Porter, R. J. Nemanich, R. F. Davis, J. J. Cuomo, G. L. Doll, Stephen J. Harris, Appl. Phys. Lett. 67, 3912 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    R. J. Nemanich, P. K. Bauman, M. C. Benjamin, S. W. King, J. Van der Weide, R. F. Davis, Diamond and Related Materials 5, 790 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    M. C. Benjamin, Cheng Wang, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 64, 3288 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    R. L. Bell, Negative electron affinity devices (Clarendon Press, Oxford, 1973).

    Google Scholar 

  8. 8.

    I. L. Krainsky, V. M. Asnin, J. A. Dayton, Appl. Surf. Sci. 111, 265 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    L. M. Wang, Z. Cheng, Q. Ping, X. Hou, Appl. Phys. Lett. 67, 91 (1995).

    CAS  Article  Google Scholar 

  10. 10.

    W. E. Pickett, Phys. Rev. Lett. 73, 1664 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    J. Vanderweide, R. J. Nemanich, J. Vac. Sci. Technol. B 12, 2475 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    J. Sakai, G. Mizutani, S. Ushioda, Surf. Sci. 283, 217 (1993).

    CAS  Article  Google Scholar 

  13. 13.

    T. L. Guo, J. Appl. Phys. 72, 4384 (1992).

    CAS  Article  Google Scholar 

  14. 14.

    F. Ciccacci, G. Chiala, J. Vac. Sci. Technol. A 9, 2991 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    T. Abukawa, Y. Enta, T. Kashiwakura, S. Suzuki, S. Kono, T. Sakamoto, J. Vac. Sci. Technol. A 8, 3205 (1990).

    CAS  Article  Google Scholar 

  16. 16.

    C. Bandis, B. B. Pate, Surf Sci. 350, 315 (1996).

    CAS  Article  Google Scholar 

  17. 17.

    T. L. Guo, H. R. Gao, Appl. Phys. Lett. 58, 1757 (1991).

    CAS  Article  Google Scholar 

  18. 18.

    V. L. Alperovich, A. G. Paulish, H. E. Scheibler, A. S. Terekhov, Appl. Phys. Lett. 66, 2122 (1995).

    CAS  Article  Google Scholar 

  19. 19.

    L. N. Dinh, W. McLean II, M. A. Schilbach, M. Balooch, to appear in Phys. Rev. B

  20. 20.

    Due to convolution of the clusters’ dimensions with the finite radius of the AFM tip, AFM diameter measurements tended to give values that are much higher than actual values. So diameter measurement is avoided here.

  21. 21.

    G. Ertl, J. Kuppers, Low Energy Electrons and Surface Chemistry (VCH, Deerfield Beach, Florida, 1985).

    Google Scholar 

  22. 22.

    L. N. Dinh, L. L. Chase, M. Balooch, W. J. Siekhaus, F. Wooten, Phys. Rev. B54, 5029 (1996)

    Article  Google Scholar 

  23. 23.

    R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, Massachusetts, 1961).

    Google Scholar 

  24. 24.

    Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, Phys. Rev. B 48, 4883 (1993).

    CAS  Article  Google Scholar 

  25. 25.

    L. Tsybeskov, J. V. Vandyshev, and P. M. Fauchet, Phys. Rev. B 49, 7821 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    M. Yamada, A. Takazawa, and T. Tamura, Jpn. J. Appl. Phys. 31, L1451 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    F. Koch, V. Petrova-Koch, and T. Muschik, J. Lumin. 57, 271 (1993).

    CAS  Article  Google Scholar 

  28. 28.

    G. A. Somorjai, Principles of Surface Chemistry, (Prentice Hall, Englewood Cliffs, New York, 1972).

    Google Scholar 

  29. 29.

    C. Kittel, Introduction to Solid State Physics (5th edition), (John Wiley & Sons, Inc., New York, 1976).

    Google Scholar 

  30. 30.

    C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, (Academic Press, Inc., 1991).

    Google Scholar 

  31. 31.

    G. P. Meyers, M. Aslam, P. Klimecky, L. W. Cathey, R. E. Elder, B. E. Artz, J. Vac. Sci. Technol. B 11, 642 (1993).

    Article  Google Scholar 

  32. 32.

    D. Temple, C. A. Ball, W. D. Palmer, L. N. Yadon, D. Vellenga, J. Mancusi, H. F. Gray, J. Vac. Sci. Technol. B 13, 150 (1995).

    CAS  Article  Google Scholar 

  33. 33.

    T. Hirano, S. Kanemaru, J. Itoh, J. Vac. Sci. Technol. B 14, 3357 (1996).

    CAS  Article  Google Scholar 

  34. 34.

    J. M. Macaulay, I. Brodie, C. A. Spindt, C. E. Holland, Appl. Phys. Lett. 61, 997 (1992).

    CAS  Article  Google Scholar 

  35. 35.

    F. Y. Chuang, C. Y. Sun, H. F. Cheng, C. M. Huang, and others, Appl. Phys. Lett 68, 1666 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    M. Q. Ding, A. F. Meyers, W. B. Choi, R. D. Vispute, and others, J. Va. Sci. Technol. B 15, 840 (1997).

    CAS  Article  Google Scholar 

  37. 37.

    T. B. Xie, W. A. Mackie, P. R. Davis, J. Vac. Sci. Technol. B 14, 2090 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    G. Fursey, Appl. Surf. Sci. 94/95, 44 (1996).

    CAS  Article  Google Scholar 

  39. 39.

    K. L. Jensen, A. K. Ganguly, J. Appl. Phys. 73, 4409 (1993).

    CAS  Article  Google Scholar 

  40. 40.

    R. Stratton, Phys. Rev. 1, 67 (1962).

    Article  Google Scholar 

  41. 41.

    R. Schlesser, M. T. Mclure, B. L. McCarson, and Z. Sitar, J. Appl. Phys. 82, 5763 (1997).

    CAS  Article  Google Scholar 

  42. 42.

    V. V. Zhirnov, G. J. Wojak, W. B. Choi, J. J. Cuomo, and J. J. Hren, J. Vac. Sci. Technol. A 15, 1733 (1997).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. N. Dinh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dinh, L.N., McLean, W., Schildbach, M.A. et al. Properties of Si/Cs/O nanocluster thin films with negative electron affinity. MRS Online Proceedings Library 558, 533–543 (1999). https://doi.org/10.1557/PROC-558-533

Download citation