Scientific Bases for Cladding Credit as a Barrier to Radionuclide Release at the Proposed Yucca Mountain Repository

Abstract

The performance of Zircaloy nuclear fuel cladding in the environment of the proposed Yucca Mountain (YM) high-level waste (HLW) repository is evaluated. Because the uniform aqueous corrosion/oxidation rate is extremely slow, this evaluation focuses on mechanical failure, localized corrosion, stress corrosion cracking (SCC), hydrogen embrittlement, and initial failure. Mechanical failure is expected to result from (1) disruptive events such as rockfalls from seismicity, faulting, and igneous activities, (2) creep, and (3) splitting by oxidation of the spent fuel (SF) matrix. Effects of chloride ions and radiolysis are evaluated in localized corrosion and SCC. Embrittlement can be caused by delayed-hydride cracking (DHC) and hydride reorientation. Among these cladding failure modes, rockfalls, other disruptive events and initial defects can be important to performance prior to the container failure by corrosion. Confirmatory tests are required to evaluate the susceptibility to splitting by secondary mineral formation, localized corrosion, SCC, and hydride reorientation. Reliable temperature calculations with backfilling are also required. After breach, cladding may still assure slow release of radionuclides through perforations because localized failures may limit the exposure of the SF matrix and may provide high mass-transfer resistance. Failures prior to the repository emplacement arising from reactor operation, pool storage, dry storage, and transportation are also considered.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. K. Stablein, Issue Resolution Status Report (Key Technical Issue: Container Life and Source Term), letter to S. Brocoum (March 13), Nuclear Regulatory Commission, Washington, DC, 1998d.

    Google Scholar 

  2. [2]

    C. Reamer, Issue Resolution Status Report (Key Technical Issue: Container Life and Source Term, Revision 1), letter to S. Brocoum (December 1), Nuclear Regulatory Commission, Washington, DC, 1998.

    Google Scholar 

  3. [3]

    S. Mohanty, G. Cragnolino, T. Ahn, D. Dunn, P. Lichtner, R. Manteufel, and N. Sridhar, Engineered Barrier System Performance Assessment Code: EBSPAC Version 1.1, Technical Description and User’s Manual, CNWRA 97-006, Center for Nuclear Waste Regulatory Analyses, 1997.

    Google Scholar 

  4. [4]

    E. Siegmann, “Cladding credit in TSPA-VA,” Workshop on Significant Issues and Available Data - Waste Form Degradation and Radionuclide Mobilization Expert Elicitation Project, San Francisco, CA, 1997a (more details in TSPA - VA: Analyses Technical Basis Document, under preparation by DOE).

    Google Scholar 

  5. [5]

    E. Siegmann, “Cladding credit in TSPA-VA,” Workshop on Alternative Models and Interpretations - Waste Form degradation and Radionuclide Mobilization Expert Elicitation Project, San Francisco, CA, 1997b (more details in TSPA - VA: Analyses Technical Basis Document, under preparation by DOE).

    Google Scholar 

  6. [6]

    T. Ahn, “Cladding credit,” DOE/NRC Technical Exchange on Total System Performance Assessment Viability Assessment, San Antonio, TX, March 17-19, 1998.

    Google Scholar 

  7. [7]

    T. Ahn, Dry oxidation and fracture of LWR spent fuels, NUREG-1565, Nuclear Regulatory Commission, Washington, DC, 1996.

    Google Scholar 

  8. [8]

    T. Ahn, Waste Management, 14, p. 393 (1994).

    CAS  Article  Google Scholar 

  9. [9]

    A. Rothman, Potential corrosion and degradation mechanisms of zircaloy cladding on spent nuclear fuel in a tuff repository, UCID-20172, Lawrence Livermore National Laboratory, Livermore, CA, 1984.

    Google Scholar 

  10. [10]

    J. Clayton and R. Fischer in Proceedings of the Am. Nucl. Soc. Topical Meeting on Light Water Reactor Fuel Performance, 1, p. 1, American Nuclear Society, La Grange Park, IL, 1985.

    Google Scholar 

  11. [11]

    ASM International, Metals Handbook, Materials Park, OH, 1990.

    Google Scholar 

  12. [12]

    U.S. Nuclear Regulatory Commission, The model description and sensitivity analysis for TPA is currently under development and the sensitivity analysis being conducted, 1998.

    Google Scholar 

  13. [13]

    N. K. Stablein, Issue Resolution Status Report (Rev. 1), Key Technical Issue: Repository Design and Thermal-Mechanical Effects, letter to S. Brocoum (October 2), Nuclear Regulatory Commission, Washington, DC, 1998a.

    Google Scholar 

  14. [14]

    N. K. Stablein, Issue Resolution Status Report–Revision 1, Key Technical Issue: Structural Deformation and Seismicity, letter to S. Brocoum (September 30), Nuclear Regulatory Commission, Washington, DC, 1998b.

    Google Scholar 

  15. [15]

    N. K. Stablein, Issue Resolution Status Report (Key Technical Issue: Igneous Activity, Revision 1), letter to S. Brocoum (July 16), Nuclear Regulatory Commission, Washington, DC, 1998c.

    Google Scholar 

  16. [16]

    T. Sanders, K. Seager, Y. Rashid, P. Barrett, A. Malinauskas, R. Einziger, H. Jordan, T. Duffey, S. Sutherland and P. Reardon, A method for determining the spent-fuel contribution to transport cask containment requirements, SAND90-2406, Sandia National Laboratories, Albuquerque, NM, 1992.

    Google Scholar 

  17. [17]

    J. McCoy in 6th International Conference on Nuclear Engineering, ICON-6, American Society of Mechanical Engineers, new York, NY, 1998.

    Google Scholar 

  18. [18]

    I. Levy, B. Chin, E. Simonen, C. Beyer, E. Gilbert, and A. Johnson Jr., Recommended temperature limits for dry storage of spent light water reactor zircaloy-clad fuel rods in inert gas, PNL-6189, Pacific Northwest Laboratory, Richland, WA, 1987.

    Google Scholar 

  19. [19]

    M. Schwartz and M. Witte, Spent fuel cladding integrity during dry storage, UCID-21181, Lawrence Livermore National Laboratory, Livermore, CA, 1987.

    Google Scholar 

  20. [20]

    G. Thomas, Updated model for predicting spent fuel cladding integrity during dry storage, UCRL-ID-134217, Lawrence Livermore National Laboratory, Livermore, CA, 1999.

    Google Scholar 

  21. [21]

    B. Chin, M. Khan, J. Tarn and E. Gilbert, Deformation and fracture map methodology for predicting cladding behavior during dry storage, PNL-5998, Pacific Northwest Laboratory, Richland, WA, 1986.

    Google Scholar 

  22. [22]

    J. McCoy and T. Doering in Proceedings of the Fifth Annual International Conference on High-Level Radioactive Waste Management, p.565, American Nuclear Society, La Grange Park, IL, 1994.

    Google Scholar 

  23. [23]

    R. Raj and M. Ashby, Acta Met., 25, p. 653 (1975).

    Article  Google Scholar 

  24. [24]

    M. Peehs and J. Fleisch, J. Nucl. Mat., 137, p. 190 (1986).

    CAS  Article  Google Scholar 

  25. [25]

    C. Pescatore, M. Cowgill and T. Sullivan, Zircaloy cladding performance under spent fuel disposal conditions, BNL-52235, Brookhaven National Laboratory, Upton, NY, 1989.

    Google Scholar 

  26. [26]

    K. Murty, private communication, North Carolina State University, based on his submission of a report to DOE’s Management & Operating (M&O) Contractors, 1998.

    Google Scholar 

  27. [27]

    R. Einziger in Proceedings of the Fifth Annual International Conference on High-Level Radioactive Waste Management, 2, p.554, American Nuclear Society, La Grange Park, 1994.

    Google Scholar 

  28. [28]

    J. McCoy in Proceedings of the Seventh Annual International Conference on High-Level Radioactive Waste Management, p.396, American Nuclear Society, La Grange Park, IL, 1996.

    Google Scholar 

  29. [29]

    R. Einziger, “Preliminary spent LWR fuel oxidation source term model,” Workshop on Significant Issues and Available Data - Waste Form Degradation and Radionuclide Mobilization Expert Elicitation Project, San Francisco, CA, 1997.

    Google Scholar 

  30. [30]

    G. Cragnolino and J. Galvele in Passivity of Metals, edited by R. Frankethal and J. Kruger, The Electrochemical Society, Princeton, NJ, 1978.

  31. [31]

    M. Maguire in Industrial Applications of Titanium and Zirconium: Third Conference, edited by T. Webster and C.S. Yong, p. 175, ASTM STP 830, American Society for Testing and Materials Philadelphia, PA, 1984.

  32. [32]

    T. Yau, Corrosion 83, p.26/1, 1983.

    Google Scholar 

  33. [33]

    W. Burns, A. Huges, J. Mapples, R. Nelsen, and A. Stoneham, J. Nucl. Mat. 107, p. 245 (1982).

    CAS  Article  Google Scholar 

  34. [34]

    B. Cox, Corrosion, 29, p.157, 1973.

    CAS  Article  Google Scholar 

  35. [35]

    G. Mankowski, Y. Roques, G. Chatainier and F. Dabosi, Brit. Corr. J., 19, p.17 (1984).

    CAS  Article  Google Scholar 

  36. [36]

    R. Dutton, K. Nuttall, M. Puls and L. Simpson, Metallurgical Transactions A, 8A, p.1553 (1977).

    CAS  Article  Google Scholar 

  37. [37]

    D. Northwood and U. Kosasih, Int. Met. Rev., 28(2), p. 92 (1983).

    CAS  Google Scholar 

  38. [38]

    M. Cunningham, E. Simonen, R. Allemann, I. Levy, R. Hazelton and E. Gilbert, Control of degradation of spent LWR fuel during dry storage in an inert atmosphere, PNL-6364, Pacific Northwest Laboratory, Richland, WA, 1987.

    Google Scholar 

  39. [39]

    S.-Q. Shi and M. Puls, J. Nucl. Mat., 218, p.20 (1994).

    Google Scholar 

  40. [40]

    J. Mardon, G. Garner, P. Beslu, D. Charquet, and J. Senevat in Proceedings of the 1997 International Topical Meeting on LWR Fuel Performance, American Nuclear Society, La Grange Park, IL, 1997.

    Google Scholar 

  41. [41]

    R. Einziger and R. Kohli, Nucl. Tech., 67, p. 107 (1984).

    CAS  Article  Google Scholar 

  42. [42]

    D. Hardie and M. Shanahan, J. Nucl. Mat., 55, p.1 (1975).

    CAS  Article  Google Scholar 

  43. [43]

    R. Marshall, J. Nucl. Mat., 24, p.34 (1967).

    CAS  Article  Google Scholar 

  44. [44]

    J. Bai, C. Prioul and D. Francois, Met. Mat. Trans. A, 25A, p.1199 (1994).

    CAS  Article  Google Scholar 

  45. [45]

    K. Chan, J. Nucl. Mat., 227, p.220 (1996).

    CAS  Article  Google Scholar 

  46. [46]

    L. Simpson and C. Cann, J. Nucl. Mat., 87, p. 303 (1979).

    CAS  Article  Google Scholar 

  47. [47]

    P. Kreyns, W. Bourgeois, C. White, P. Charpentier, B. Kammenzind and D. Franklin in Zirconium in the Nuclear Industry, Eleventh International Symposium, edited by E.R. Bradley and G.P. Sabol, p. 758, ASTM STP 1298, American Society for Testing and Materials, Philadelphia, PA, 1996.

  48. [48]

    C. Wilson, Results from NNWSI series 3 spent fuel dissolution tests, PNL-7170, Pacific Northwest Laboratory, Richland, WA, 1990.

    Google Scholar 

  49. [49]

    L. Johnson, L.H., “Waste form exposed surface area: Relationship to degradation rate,” Workshop on Preliminary Interpretations - Waste Form Degradation and Radionuclide Mobilization Expert Elicitation Project, San Francisco, CA, 1998.

    Google Scholar 

  50. [50]

    E. Zwahlen, T. Pigford, P. Chambre and W. Lee in Proceedings of the International Topical Meeting on High Level Radioactive Waste Management 1, p. 418, American Nuclear Society, La Grange Park, IL, 1990.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. M. Ahn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahn, T.M., Cragnolino, G.A., Chan, K.S. et al. Scientific Bases for Cladding Credit as a Barrier to Radionuclide Release at the Proposed Yucca Mountain Repository. MRS Online Proceedings Library 556, 525 (1998). https://doi.org/10.1557/PROC-556-525

Download citation