The effects of silicic acid, aluminate ion activity and hydrosilicate gel development on the dissolution rate of a simulated British Magnox waste glass

Abstract

The dissolution rate of a simulated Magnox waste glass has been investigated in single-pass flow-through experiments designed to investigate the role of Al and Si in the dissolution process. The results indicate that both Al and Si species suppress the rate of dissolution. These effects may be modelled using a combined Al/Si affinity term in a conventional glass dissolution rate law. Aluminium species may also play an inhibitory role when present at relatively high solution activities. In Si-rich alkaline media, the concentration of aluminium is controlled to very low levels by the development of secondary aluminosilicate phases. Removal of Al by secondary phase precipitation results in dissolved Al activities below that required to reach ‘saturation’ with respect to the glass.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A. C. Lasaga in Kinetics of Geochemical Processes ed. A. C. Lasaga and R. J. Kirkpatrick, Reviews in Mineralogy 8, chapter 4, p. 135–169 (1981).

    CAS  Article  Google Scholar 

  2. [2]

    P. Aagaard and H. C. Helgeson, Am. J. Sci. 282 (1982) p. 237–285.

    CAS  Article  Google Scholar 

  3. [3]

    A. C. Lasaga in Chemical Weathering Rates of Silicate Minerals, eds. A. F. White and S. L. Brantley, Reviews in Mineralogy 31, chapter 2, p. 23–81 (1995).

    CAS  Article  Google Scholar 

  4. [4]

    B. Grambow, Mat. Res. Symp. Proc. Vol. 44 (1985), p. 209–216.

    Google Scholar 

  5. [5]

    W. L. Bourcier, D. W. Peiffer, K. G. Knauss, K. D. McKeegan and D. K. Smith, Mat. Res. Symp. Proc. Vol. 176 (1990), p. 209–216.

    CAS  Article  Google Scholar 

  6. [6]

    S. Gin, Mat. Res. Symp. Proc. Vol. 412 (1996), p. 189–196.

    CAS  Article  Google Scholar 

  7. [7]

    V. Daux, C. Guy, T. Advocat, J. L. Crovisier and P. Stille, Chemical Geology Vol. 142 (1997) p. 109–126.

    CAS  Article  Google Scholar 

  8. [8]

    T. Advocat, J. L. Chouchan, J. L. Crovisier, C. Guy, V. Daux, C. Jegou, S. Gin and E. Vernaz, Mat. Res. Symp. Proc. Vol. 412 (1998), p. 63–70.

    Google Scholar 

  9. [9]

    B. P. McGrail, W. L. Ebert, A. J. Bakel and D. K. Peeler, Journal of Nuclear Materials, Vol. 249 (1997), p. 175–189.

    CAS  Article  Google Scholar 

  10. [10]

    ASTM, Standard Test Methods for Determining the Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT), ASTM C 1285-94, Annual Book of ASTM standards, Philadelphia, PA (1994).

    Google Scholar 

  11. [11]

    D. L. Parkhurst, U. S. Geological Survey, Water-Resources Investigations Report 95-4227 (1995).

    Google Scholar 

  12. [12]

    P. K. Abraitis, D. J. Vaughan, F. R. Livens, J. Monteith, D. P. Tnivedi and J. S. Small, Mat. Res. Symp. Proc. Vol. 412 (1998), p. 47–54.

    Google Scholar 

  13. [13]

    B. F. L. Smith in Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. ed. M. J. Wilson, chapter 9, p. 331–357 (1994).

  14. [14]

    P. Van Iseghem, T. Amaya, Y. Suzuki and H. Yamamoto, Journal of Nuclear Materials, Vol. 190 (1992), p. 269–276.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. K. Abraitis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abraitis, P.K., McGrail, B.P. & Trivedi, D.P. The effects of silicic acid, aluminate ion activity and hydrosilicate gel development on the dissolution rate of a simulated British Magnox waste glass. MRS Online Proceedings Library 556, 401 (1998). https://doi.org/10.1557/PROC-556-401

Download citation