Thermochemical Models for Nuclear Waste Glass Subsystems–MgO-CaO and MgO-Al2O3

Abstract

A relatively simple model, the associate species model, is being applied to nuclear waste glass compositions in order to accurately predict behavior and thermodynamic activities in the material. In the model, the glass is treated as a supercooled liquid, with the liquid species allowed to exist below their melting point. The approach requires an initial assembly of binary and ternary oxide liquid solution data that sufficiently reproduce the equilibrium phase diagrams. Two binary oxide subsystems, MgO-CaO and MgO-Al2O3, have been modeled and results compared to published phase diagrams. Computed activities of the glass constituent species are plotted as a function of composition at 1200°C.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.J.G. Ellison and A. Navrotsky in Scientfic Basis for Nuclear Waste Management XIII edited by V.M. Oversby and P.W. Brown (Mater. Res. Soc. Proc. 176, Pittsburgh, PA 1990), pp. 193–207.

    CAS  Google Scholar 

  2. 2.

    J.W. Hastie and D.W. Bonnell, High Temp. Sci. 19, 275 (1985).

    CAS  Google Scholar 

  3. 3.

    J.W. Hastie, Pure and Appl. Chem. 56, 1583 (1984).

    CAS  Article  Google Scholar 

  4. 4.

    J.W. Hastie, E.R. Plante, and D.W. Bonnell, Vaporization of Simulated Nuclear Waste Glass, NBSIR 83-2731, NIST, Gaithersburg, MD (1983).

    Google Scholar 

  5. 5.

    D.W. Bonnell and J.W. Hastie, High Temp. Sci. 26, 313 (1990).

    Google Scholar 

  6. 6.

    K.E. Spear, P. Benson, and C.G. Pantano in High Temperature Materials Chemistry IV, edited by Z.A. Munir, D. Cubicciotti, and H. Tagawa (The Electrochemical Society, Pennington, NJ 1988), pp. 345–354.

  7. 7.

    P.M. Benson, K.E. Spear, and C.G. Pantano, Ceram. Eng. Sci. Proc. 9 (7-8) 663–670 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    C.G. Pantano, K.E. Spear, G. Qi, and D.M. Beall in Advances in Ceramic-Matrix Composites, Transactions edited by N. Bansal (Am. Ceram. Soc. 38, Westerville, OH 1993), pp. 173–198.

    CAS  Google Scholar 

  9. 9.

    T.E. Paulson, K.E. Spear, and C.G. Pantano in High Temperature Materials Chemistry IX, (Electrochem. Soc. 97–39, Pennington, NJ, 1997) pp 194–202.

    Google Scholar 

  10. 10.

    T. E. Paulson, K. E. Spear and C. G. Pantano, “Thermodynamic Analysis of the Tin Penetration Profile in High-Iron Float Glass,” To be published in proceedings of International Congress on Glass, Summer 1998.

    Google Scholar 

  11. 11.

    A.D. Pelton and M. Blander, Met. Trans. B 17B, 805 (1986).

    CAS  Article  Google Scholar 

  12. 12.

    M. Blander and A.D. Pelton, Geochim. Cosmochim. Acta 51, 85 (1987).

    CAS  Article  Google Scholar 

  13. 13.

    A. D. Pelton, Pure and Applied Chem. 69 (11) 2245–2252 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    C. H. P. Lupis, Chemical Thermodynamics Of Materials (North-Holland Pub., New York, 1983) p. 446.

    Google Scholar 

  15. 15.

    G. Eriksson and K. Hack, Met. Trans. B 21B, 1013–1023 (1990); ChemSageTM, Version 4.0, GTT Technologies, Kaiserstrasse 100, 52134 Herzogonrath, Germany, (1998).

    CAS  Article  Google Scholar 

  16. 16.

    SGTE Pure Substance Database, 1996 Version; produced by the Scientific Group Thermodata Europe, and obtained through GTT Technologies (see ref. 15).

  17. 17.

    Phase Diagrams for Ceramists, Volumes 1–12 (The American Ceramic Society, Westerville, OH, 1964–1996).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. M. Besmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Besmann, T.M., Spear, K.E. & Beahm, E.C. Thermochemical Models for Nuclear Waste Glass Subsystems–MgO-CaO and MgO-Al2O3. MRS Online Proceedings Library 556, 383 (1998). https://doi.org/10.1557/PROC-556-383

Download citation