Impurity Induced Slowing oF Nucleation in Emulsified Liquids

Abstract

We report detailed nucleation studies on the liquid -to -solid transition of hexadecane using nearly monodisperse hexadecane -in -water emulsions. A careful consideration of the kinetics of isothermal and nonisothermal freezing show deviations from predictions of classical nucleation theory, if one assumes that the emulsion droplet population is homogeneous. Similar deviations have been observed previously [3]. As an explanation, we propose a novel argument based on the dynamic generation of droplet heterogeneity mediated by mobile impurities. This proposal is in excellent agreement with existing data.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    B. Vonnegut, J. Colloid Sci. 3, p. 563 (1948).

    CAS  Article  Google Scholar 

  2. [2]

    D. Turnbull, J. Chem. Phys. 20, p. 411 (1952).

    CAS  Article  Google Scholar 

  3. [3]

    D. Turnbull and R. L. Cormia, J. Chem. Phys. 34, p. 820 (1961).

    CAS  Article  Google Scholar 

  4. [4]

    K. F. Kelton, Solid State Physics 45, p. 75 (1991).

    CAS  Article  Google Scholar 

  5. [5]

    J. H. Perepezko, Materials Science and Engineering A 226-228, p. 374 (1997).

    Article  Google Scholar 

  6. [6]

    J. H. Perepezko, Materials Science and Engineering 65, p. 125 (1984).

    CAS  Article  Google Scholar 

  7. [7]

    J. Bibette, J. Colloid Interface Sci. 147, p. 474 (1991).

    CAS  Article  Google Scholar 

  8. [8]

    K. Kandori, K. Kishi and T. Ishikawa, Colloids and Surfaces 55, p. 73 (1991).

    CAS  Article  Google Scholar 

  9. [9]

    K. Kandori, K. Kishi and T. Ishikawa, Colloids and Surfaces 61, p. 269 (1991).

    CAS  Article  Google Scholar 

  10. [10]

    D. R. Uhlmann, G. Kritchevsky, R. Straff and G. Scherer, J. Chem. Phys. 62, p. 4,896 (1975).

    Article  Google Scholar 

  11. [11]

    M. J. Oliver and P. D. Calvert, J. Crystal Growth 30, p. 343 (1975).

    CAS  Article  Google Scholar 

  12. [12]

    D. J. McClements; E. Dickinson and M. J. W. Povey, Chem. Phys. Lett. 172, p. 449 (1990).

    CAS  Article  Google Scholar 

  13. [13]

    E. Dickinson, F.-J. Kruizenga, M. J. W. Povey and M. v. d. Molen, Col. and Surf. A 81, p. 273 (1993).

    CAS  Article  Google Scholar 

  14. [14]

    E. Dickinson, M. I. Goller, D. J. McClements, S. Peasgood and M. J. W. Povey, J. Chem. Soc. Faraday Trans. 86, p. 1,147 (1990).

    Article  Google Scholar 

  15. [15]

    E. Dickinson, D. J. McClements and M. J. W. Povey, J. Colloid Interface Sci. 142, p. 103 (1991).

    CAS  Article  Google Scholar 

  16. [16]

    D. Turnbull and F. Spaepen, J. Polym. Sci., Polym. Symp. 63, p. 237 (1978).

    CAS  Article  Google Scholar 

  17. [17]

    D. M. Small, The Physical Chemistry of Lipids: From Alkanes to Phospholipids, Plenum Press, New York, 1986.

    Google Scholar 

  18. [18]

    H. Nakayama, K. Shinoda and E. Hutchinson, J. Phys. Chem. 70, p. 3,502 (1966).

    Article  Google Scholar 

  19. [19]

    M. Hato and K. Shinoda, J. Phys. Chem. 77, p. 378 (1973).

    CAS  Article  Google Scholar 

  20. [20]

    H. Shao, Ph.D Thesis, X-ray Scattering Study of Structures and Phase Transitions of Normal Alkanes, The Ohio State University, 1995.

    Google Scholar 

  21. [21]

    D. Turnbull and J. C. Fisher, J. Chem. Phys. 17, p. 71 (1949).

    CAS  Article  Google Scholar 

  22. [22]

    D. Wu, Solid State Physics 50, p. 37 (1996).

    Article  Google Scholar 

  23. [23]

    We neglect the difference in specific heats Cp between the liquid and solid phases in this case.

  24. [24]

    D. Turnbull, Contemp. Phys. 10, p. 473 (1969).

    CAS  Article  Google Scholar 

  25. [25]

    At typical crystal growth velocities of meters per second, the time lag between nucleation and completion of growth in a single emulsion droplet is on the order of a microsecond. Even though these materials form plate-like structures during freezing which suggests slower growth along certain crystallographic directions, the ratio of the slow rate to the fast one would have to be less than 10-6 to have an effect on the experiments.

  26. [26]

    E. B. Sirota, Langmuir 14, p. 3,133 (1998).

    CAS  Article  Google Scholar 

  27. [27]

    E. B. Sirota and A. B. Herhold, Science (to be published.)

  28. [28]

    D. B. Siano, J. Chem. Educ. 49, p. 755 (1972).

    CAS  Article  Google Scholar 

  29. [29]

    The standard deviation for the emulsion droplet volume distribution is about 0.3.

  30. [30]

    E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, 3rd Edition, Part 1, Pergamon Press, New York, 1980, Chap. 9.

    Google Scholar 

  31. [31]

    D. Ertaş, A. Herhold, A. J. Levine, and H. E. King Jr., in preparation.

  32. [32]

    J. L. Kurz, J. Phys. Chem. 66, p. 2,239 (1962)

    CAS  Article  Google Scholar 

  33. [32a]

    M. Muramatsu and M. Inove, J. Colloid Interface Sci. 55, p. 80 (1976).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amy Herhold.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herhold, A., Ertaş, D., Levine, A.J. et al. Impurity Induced Slowing oF Nucleation in Emulsified Liquids. MRS Online Proceedings Library 543, 85–96 (1998). https://doi.org/10.1557/PROC-543-85

Download citation